

 StochSD User’s Manual

 and Tutorial

Part I. Deterministic modelling and simulation with StochSD

Part II. Stochastic modelling and simulation with StochSD

© Leif Gustafsson, Uppsala University, Uppsala, Sweden

File: StochSD_User’s_Manual_2024-01-24.pdf

Home Page: https://stochsd.sourceforge.io

https://stochsd.sourceforge.io/

 2

 3

Contents

Introduction 5

1. Installation of StochSD 7

 1.1 StochSD Desktop 7

 1.2 StochSD Web 7

Part I. Deterministic modelling with StochSD 9

 2. The building blocks of a model 10

 3. Starting up StochSD 13

 3.1 Menus 13

 3.2 Buttons 16

 3.3 Time display, Time Unit button and Inspection field 18

 4. Model building 19

 4.1 Primitives (Building blocks) 19

 4.2 Styling buttons 21

 4.3 Naming and defining relations of the primitives 21

 5. Equations 24

 5.1 Defining the equation 24

 5.2 Error checking 24

 6. Specifications of the simulation 26

 7. Simulation 29

 8. Results presentation 30

 8.1 The Number Box 30

 8.2 The Table 31

 8.3 The Time Plot 31

 8.4 The Compare Simulations Plot 32

 8.5 The XY Plot 33

 8.6 The Histogram 34

 9. StochSD model examples 35

10. Functions 38
 10.1 Programming Functions 40

 10.2 Mathematical Functions 42

 10.3 Historical Functions 46

 10.4 Random Number Functions 49

 10.5 Statistical Distributions 52

 10.6 Converter (Table look-up function) 52

11. Macro Functions 54

 4

12. Practical tips 56

13. References to deterministic CSS modelling 58

Part II. Stochastic modelling with StochSD 59

14. Stochastic modelling 60

 14.1 A historic note and the motivation for StochSD 60

 14.2 What is stochasticity? 61

 14.3 Five types of uncertainty about the system under study 61

 14.4 Why including uncertainties in the model? 62

 14.5 How to model uncertainties 62

 14.6 What can happen if you ignore stochasticity? 67

 14.7 A warning example – Comparing the results from a deterministic

 and a stochastic SIR model 68

 14.8 Making a stochastic model reproducible 68

15. A stochastic StochSD model 70

16. Tools in StochSD 71

 16.1 The StatRes tool 71

 16.2 The Optim tool 71

 16.3 The ParmVar tool 72

 16.4 The Sensi tool 72

 16.5 Hiding the tool 72

 16.6 Clearing a tool 72

17. References to stochastic CSS modelling 73

Appendix. The StochSD package, Licenses and Responsibility 74
 A1. The structure of the StochSD package 74

 A2. Short explanations of licenses for StochSD and third-party components 74

 A3. Responsibility 75

Index 77

 5

Introduction

StochSD (Stochastic System Dynamics) is an open-source tool for stochastic (and

deterministic) modelling and simulation based on the System Dynamics approach to

Continuous System Simulation (CSS).

Continuous System Simulation (CSS) is a macro description of a dynamic system

by differential equation (numerically described as difference equations) and algebraic

equations. During the simulation, the equations are stepwise updated timestep by

timestep. Classical CSS only handled continuous matter, but Full Potential CSS can

also handle discrete entities. In this latter case, randomness usually plays an important

role – see Part II of this manual.

System dynamics (SD) is a pedagogic approach to structure and model complex

systems based on stocks (compartments), flows and causal links. The pedagogic

advantages are several: First, the model is structured in a click-and-play manner based

on a few types of building blocks to recreate the main structure of a system under

study. Second, SD’s graphical stock-and-flow approach gives an intuitive

understanding of how the model is updated over time. Third, the graphical structure of

stocks, flows and causal links displays the feedback loops that explains the model’s

behaviour in terms of growth (from positive loops), stabilising factors (from negative

loops) and oscillations. Fourth, the SD models are very easy to program; you focus on

one symbol at a time and define its relation to those symbols pointing at it. Fifth, the

model and its behaviour are easy to understand and communicate, also to persons less

experienced in mathematics or programming.

A unique feature in StochSD is that it also supports stochastic modelling; i.e.

modelling where random numbers are included. A deterministic model assumes that

you have complete knowledge that you correctly implement in your model, which

then produce categorical results. In a stochastic model, on the other hand, you

describe the uncertainties with the help of random numbers drawn from a statistical

distribution that describes your uncertainties. Each simulation of the model then will

produce a different behaviour. By making many simulations, you obtain statistical

distributions of results from which you can calculate max, min, averages, confidence

intervals, correlations, and other statistics that displays the confidence you should

have for different outcomes.

StochSD has the random number functions for stochastic model building. Further,

StochSD also has tools for specifying the number of simulations, provide controllable

seeds (if desired), collect data of selected quantities, make statistical analyses of the

outcomes, and to present these results in various ways.

StochSD is based on Insight Maker1 version 5 from which we have taken open parts:

simulation engine, function library, error detection facility, macro facility etc., and

replaced the non-open parts with open-source packages and our own code and design.

1 Insight Maker is a simulation package developed by Scot Fortmann-Roe. We have taken the open

System Dynamics part: simulation engine, function library, error detection facility, macro facility etc.

from Insight Maker. However, the non-open parts based on mxGraph (for model flowchart and result

diagrams) and Ext JS (for the model window and buttons etc.) have been replaced in order to make

 6

That StochSD is open-source means that you get it and use it for free. It also gives

you the right to modify the StochSD source code under open-source licences, see

Appendix A2. StochSD is written in JavaScript.

StochSD is developed to build deterministic and stochastic models according to the

System Dynamics approach, simulate them and analyse the results. It is also

supplemented with tools for sensitivity analysis, optimisation, statistical analysis and

parameter estimation.

Part I of this manual focuses on how you build and simulate deterministic models in

StochSD, while Part II focuses on stochastic modelling, simulation and statistical

analysis from multiple simulation runs.

StochSD can be used to study complex systems and their behaviours in a large

number of fields; for example, biology, ecology, medicine, epidemiology, economics,

physics, technology or social sciences. A model is constructed by placing and

connecting predefined graphical symbols at suitable places on the screen. StochSD

then transforms the graphical model into executable code that will display the model’s

behaviour.

StochSD is available in two versions: StochSD Desktop and StochSD Web. Both

versions of StochSD work on Windows, Mac OS X and Linux.

The Desktop version can be downloaded from StochSD’s home page and runs as a

normal program (using NW.js which stands for Node-Webkit.JavaScript), while the

web version requires a web-browser such as Google Chrome, Mozilla Firefox or

Microsoft Edge to load StochSD and run your models. StochSD does not support

Internet Explorer.

 For installation of StochSD Desktop or running of StochSD Web, see next section.

StochSD Home Page: https://stochsd.sourceforge.io.

StochSD was developed by Leif Gustafsson, Erik Gustafsson and Magnus Gustafsson,

Uppsala University, Uppsala, Sweden.

Mail: leif.gunnar.gustafsson@gmail.com

StochSD is fully open-source. Furthermore, the file handling has been rewritten. Finally, we have made

some modifications to conform to the System Dynamics conventions. (Insight Maker is available at:

http://InsightMaker.com.)

https://stochsd.sourceforge.io/
mailto:leif.gunnar.gustafsson@gmail.com
http://insightmaker.com/

 7

1. Installation of StochSD

 StochSD is available in two versions: StochSD Desktop, which runs under

Windows, macOS and Linux, and StochSD Web, which is a web application that can

be run under other operative systems.

Although, the Web version can be directly used for testing StochSD without an

installation, the Desktop version is recommended because your models can then be

locally stored and loaded on your computer. Here you can also arrange your files in

directories of your choice.

Furthermore, with the Desktop version you can use a Recent List for direct access to

your latest model files.

1.1 StochSD Desktop

System requirements

StochSD Desktop can be used under the operative systems: Windows, Mac OS X and

Linux.

Installation instructions

The Desktop version is downloaded from StochSD’s home page:

https://stochsd.sourceforge.io.

To the left of the Home Page you find and click: ‘StochSD Software’. Then choose the

‘Download StochSD’, which takes you to the proper page in SourceForge where you

download a zip-file for the proper version for Windows, Mac OS X or Linux.

Find the downloaded StochSD.zip file on your computer and unzip it into a folder of

your choice.

Then find the stochsd.exe file . You can now start StochSD by clicking this file,

but it is more convenient to first create a shortcut and place it on your desktop, from

where you can start StochSD.

For Mac OS X and Linux there are minor differences from the installation instruction.

For example, the postfix .exe is only used in Windows.

Note that StochSD is an unidentified developer to Apple. Therefore, Mac OS X

requires some settings to be changed. For instructions, see “How To Open & Allow

Unidentified Developer Apps & Allow Downloads From Anywhere On Apple Mac.”

A Step-By-Step Video Tutorial: https://www.youtube.com/watch?v=WiYmUXVOlgI.

1.2 StochSD Web

If you want to yest StochSD you can try StochSD Web. Further, on a computer where

StochSD Desktop is not possible to use, for example Chromebook, the Web applica-

tion is a way to run StochSD.

https://stochsd.sourceforge.io/
https://www.youtube.com/watch?v=WiYmUXVOlgI

 8

System requirements

StochSD Web can be used under any operative system that can run a modern web

browser. We recommend Mozilla Firefox, Google Chrome or Microsoft Edge.

(Internet Explorer is not supported.)

Running instruction:

Write: https://stochsd.sourceforge.io/software in Google Chrome or Mozilla Firefox

and press Enter, (or Ctrl-click on this link from here). Alternatively, from the

StochSD Home Page, you can click on “Try StochSD online”.

There are some drawbacks with StochSD Web.

• The browser steals a part of the screen.

• With the Web version you can’t use a Recent List for direct access to your

latest model files.

• Although you can open a file from any directory with the Web version, you

can only save it in your Download directory (from where you, of course, can

manually move the file to any directory). This limitation is because of security

arrangements in the web browser. However, with new versions of Google

Chrome, Microsoft Edge and other Chromium based browsers a file can be

saved to any location.

https://stochsd.sourceforge.io/software

 9

Part I. Deterministic modelling with StochSD

Purpose: To build dynamic compartment models and simulate their behaviours.

Worldview: The world consists mainly of two kinds of fundamental elements: Stocks

and Flows.

Deterministic modelling teaches the student the fundamentals of model building and

simulation. It is also an ideal starting point for understanding the relation between the

structure and the behaviour of a real system or a model. Furthermore, deterministic

modelling can be used to study systems, which we completely understand.

However, most systems under study contain uncertainties of different kinds due to

limited knowledge. This is handled by drawing random numbers from appropriate

statistical distributions, and makes the model stochastic. How stochastic modelling

and simulation are done is treated in Part II.

 10

2. The building blocks of a model

In this section the six building blocks denoted primitives: Stock, Flow, Link,

Auxiliary, Parameter and Converter by which you construct your model is StochSD

are introduced. A seventh primitive, the Ghost, is introduced in Section 4, but it just

duplicates an existing primitive of cosmetic reasons. (As soon as you have specified

the time unit to use in the StochSD model, you can start building!)

Stock is a container for something, e.g. water, people, cars, or money.

(Synonyms: State variable, Compartment, Level.) A new Stock is assigned a

start value and a proper name after double-clicking the symbol.

Flow is the active primitive that generates changes. (Synonyms:

Transition, Rate.) A flow is always a rate - something per time unit. It may

be water per second, Immigrants per year, Deaths per month, Cars produced per

week, etc. Flows fill up or drain Stocks. The new Flow should be defined and

assigned a proper name after double-clicking the symbol. Note that the arrow shows

the positive direction of a flow. If the flow has a negative value, it flows in the

direction opposite to the arrow.

 A cloud symbol appears in the end if it is not attached to a stock. This tells that the

Flow starts or ends outside the studied system, see Figure 2.1.

A bathtub analogy is a useful metaphor. The Stock is a bathtub

where e.g. water is added by an Inflow and drained by an

Outflow. The dynamic behaviour of a model is created by

flows accumulated in and/or drained from Stocks

A stock can only be changed by physical flows (of water,

money, rabbits, etc.), but a flow rate can change because of

influence from other primitives. This influence (transmitted

through an information link) is represented by a single-lined

arrow and may not be confused with a physical flow. Figure 2.1. The bathtub analogy.

Link transfers information from one primitive to another. (Synonyms,

Information, Signal.) A link has no name, and the information it transfers

is defined by the primitive at the sending end and its impact is defined by the

primitive at the receiving end.

For practical reasons, three more graphical symbols are added.

Auxiliary contains a calculation based on functions and the values of other

primitives linked to it. The auxiliary can be defined and assigned a proper

name after double-clicking the symbol.

Parameter is a special case of an auxiliary that must not have any incoming

link.2 Of pedagogical reasons, it is good to distinguish between an

2 In System Dynamics languages, the Auxiliary and the Parameter are defined a little differently. In

some languages is restricted to a constant value, in some the changes its shape to when it

holds a function or is dependent of other quantities, and in some there is just one common symbol for

Auxiliaries and Parameters.

 11

unexplained Parameter (i.e. whose value is defined outside the system

boundaries) and an Auxiliary (that is calculated within the model based on

other model primitives linked to the Auxiliary). A Parameter can have a

constant value, a time function or a random function. The Parameter is

defined and named after double-clicking the symbol.

Converter is a table look-up function where you can describe the relation

between two primitives like X and Y in tabular form. See Section 10.8.

A preview of a StochSD model

A System Under Study, which we want to describe, understand or predict its

behaviour, is a delimited piece of the universe. The system boundaries divide the

universe into two parts: The System Under Study and its Environment.

To give a short preview of a StochSD model, we have to take a wider view including

a specific System Under Study and its Environment to be described in a Simulation

Model, and also including some necessary specifications. So, first we have to dismiss

the common view that a Model only contains a description of the System Under

Study.

The System Under Study is defined by space, time period, what subjects or substance

to be regarded and the level of details when describing it in form of a model.

However, how cautious and clever you were when defining the System Under Study,

you will usually also have to consider important impacts from the Environment onto

the System. In StochSD we describe such impacts by parameters (), which by links

affect Auxiliaries or Flows in the model. Further, we are not interested in explaining

the origins of objects or matter flowing into the model (by births, immigration,

import, etc.) or where used objects or matter will go or decompose after transferred

away from the model through an outflow. Therefore, a model flow can origin from an

unexplained source or end in a sink outside our scope. In those cases, the flow starts

or ends in a cloud symbol to show that the cloud belongs to the Environment rather

than to the System Under Study.

Furthermore, the model must contain specifications about when in time the model

study starts and for how long. Also, the artificial updating in time-steps, to resemble

an almost continuous time, must be defined together with the chosen algorithm that

performs the stepwise updating.

A simple example

To make this concrete, assume that you want to study the epidemic of an infectious

disease in a population using a so-called SIR model. This model has the three stages S

(Susceptibles), I (Infectious) and R (Recovered). When a Susceptible meets an

Infectious there is a risk of infecting the Susceptible. The Infectious will recover after

on average T time units, but a small fraction of the them will die. In Figure 2.2, the

System Under Study is described in the kernel of the model. However, there are a

number of issues outside the System boundaries that have to be considered. The risk

for a Susceptible to be infected per time unit, p, depends on the infectiousness of the

disease, on the structure of the society, on the behaviours of the individuals, etc. Since

 12

we have no ambition or possibility to describe all such factors, we may settle with an

(unexplained) average value placed in the parameter p. The same is valid for the

sojourn time T in the Infectious stage which may be a complex function of treatment,

medication, age, sex, etc.

In epidemic modelling, we are also interested in the so-called reproduction number,

Rt=S(t)pT, that tells how many persons an infectious one will on average infect

before he or she becomes immune or die3. If Rt is smaller than one, the epidemic will

decrease. (In particular, R0 tells whether there will be an epidemic or not.) In this

model, we have included Rt as an Auxiliary explained by S, p and T.

In Figure 2.2, we have described the epidemic system with a structure of Stocks,

Flows, Auxiliary and Links in the kernel of the model. Outside the kernel we have

placed all Parameters to show that they describe how the Environment affects the

System Under Study. The cloud symbol at the end of the death flow, although only

cosmetic, tells that what happens after death is outside the scope of the system study,

and thus the cloud belongs outside the kernel of the model.

Outside the ‘Environmental frame’ in Figure 2.2, you find the Specifications

necessary to run the model. These are not displayed in the graphical representation,

but are still an important part of the model.

Figure 2.2. A simulation model consists of: 1) The model kernel representing the System

Under Study, 2) The parameters representing influences from the environment. Further, in-

and outflows through the boundaries of the system start or end with a cloud, 3) Specifications

of Start time, Length of simulation, Time Step and Integration method.

However, in practical modelling, we place Parameters and Clouds where it is

convenient and tidy. It is sufficient that the symbols tell what is within and outside the

system boundaries.

Finally, a StochSD model uses Plots, Tables and Number Boxes to display the results.

3 To be exact, the infectious time constant, T, should also consider the dying persons (T → T+D).

Specifications

Kernel

Environmental impacts

Start time = 0, Length = 50, Time Step = 0.1, Method: Euler

Actual or
assumed reality

Environment
to the system

System

Under Study

 13

3. Starting up StochSD

StochSD is available in two versions: StochSD Desktop and StochSD Web. For

installation and use, see Section 1. This manual applies for both versions.

When you open StochSD, the StochSD workspace is shown. On the upper part of the

screen you see rows of Menus and Buttons, and below is the Model window (which is

empty at start). As soon as you have specified the Time Unit to be used, you can

begin the model building in a click-and draw manner.

Figure 3.1. The StochSD screen consists of a Title bar, rows of Menus and Buttons, and the

Model window. The Model window is here shown with a few building blocks and a Time

Plot.

The Title bar shows the file name (with its path) and the time for last saving.

The row of Menus consists of pull-down and pop-up menus, and the row of Buttons

is used for construction, result presentation and running the model.

In the right end of this row is a field showing Start Time, Current Time and End

Time, and below the Integration Method and the Time Step used.

Further right is a button for specification of the Time Unit used for the model.

Finally, to the left under the buttons, there is an Inspection field where you can see

the definitions of a marked primitive without opening it, and to the right there are

links to the home pages of StochSD and Insight Maker.

3.1 Menus

In the menus you find: File, View, Print, Simulation Settings, Macros, Colour,

Tools and Help.

File menu
The file handling in StochSD is managed from the File menu in a similar way to most

programs, e.g. Microsoft Word.

 14

In StochSD, a model constitutes a file. You can create a new model, save the model

and open it again.

When using StochSD - Desktop you can choose the folder to save the model in.

When using StochSD – Webb the files are always stored in your Downloads folder

because of security arrangements in the web browser.

The File menu contains:
- New

- Open (Ctrl O)

- Save (Ctrl S)

- Save As …

- List of Recent Files

To create a new model, you click New in the File menu.

A model can be opened by clicking Open in the File menu (or directly: Ctrl O).

By pressing the Save as … option in the File menu, you open a form for saving your

model. Her you can give the file a proper name. In the Desktop version of StochSD

you can also browse to a dictionary of your choice, while in the Web version the

model is always stored in your Download library.

When the model has a name and location, you can use the Save option in the File

menu (or directly; Ctrl S).

Up to ten Recent Files are directly accessible. (Only for the Desktop version.)

View menu

With the View menu you can customize the size of StochSD on your screen.

- Zoom In (Ctrl +)

- Zoom Out (Ctrl -)

- Reset Zoom (Ctrl 0)

Print menu
Printing the model diagram or its underlying equations is performed from the Print

menu. This menu contains:

- Print Diagram (Ctrl P)

- Print Equations

The model diagram can be printed on paper with the Print button or Ctrl P. However,

the Print Diagram is a screen dump. This means that you first may have to reduce the

size by zooming in (Ctrl –) or take several screen dumps to cover the whole model.

You may also zoom in (Ctrl +) to make the model larger before printing it out.

The model equations can be viewed by opening the Print menu choosing Print

Equations. You will then see the Equation List. From here you may also print the

equations. See Figure 3.2.

 15

Figure 3.2. The Equation List for the small model shown to the left.

As seen in the figure, in addition to the equations, sorted into Stocks, Flows, etc.,

there are also information about File name, Date, Time Unit chosen, Start Time,

Length, DT and updating Method (Euler or RK4).

Simulation Settings menu
Before you execute the model, you should open the Simulation Settings menu to

specify what time period to study and the size of the Time Step (DT). The Time Step

sets the time interval between recalculations of the model. Finally, Method stands for

the updating algorithm (‘integration’) where you can choose between Euler and

Runge-Kutta fourth order (RK4). Euler is faster and the default, while RK4 is more

accurate for a given DT. For stochastic models the advantage of RK4 is lost; it will

only make the simulation time longer.

- Start Time

- Length

- Time Step

- Method (Euler or RK4)

Macros menu
His menu enables the introduction of macros to StochSD, see Section 11.

Here you can define your own functions.

In stochastic modelling, it is often important to make the stochastic simulation

reproducible. This can be accomplished by locking the seed to the random number

generators. In the macro form, this can be done by selecting a seed and clicking the

SetRandSeed button. See Section 11.

Colour menu
After marking one or several elements (primitives, plots, etc.), you can open the

Colour menu and select one out of 12 colours.

 16

Note that you can couple the colour of a primitive and the colour of its line in a Time

Plot.

Tools menu
In the Tools menu, you find tools for Optimisation, Sensitivity analysis, Statistical

calculations and presentation, and Parameter estimation. Selecting a tool will make it

appear in a window on the right-hand side of the screen. With the Hide option, or the

‘→’ button at the top-right of the tool, you can remove the tool. The Tools menu has

the following options:

- Optim

- Sensi

- StatRes

- ParmVar

- Hide

The tools will be treated in Section 16.

Help menu
The Help menu contains:

- About StochSD

- StochSD Licence

- Third-party Licences

- StochSD User’s Manual

- Optim Manual

- Sensi Manual

- StatRes Manual

- ParmVar Manual

- What is Full Potential CSS?

- Restart and Clear Model

- Restart and Keep Model

‘About StochSD’ very briefly describes StochSD. The ‘StochSD licence’ and ‘Third-

party licences’ are found here. The ‘User’s manual’, which you are now reading, is

also available here. You can also find more detailed manuals about the tools for Opti-

mization (Optim), Sensitivity analysis (Sensi), Statistical calculations and presenta-

tion (StatRes) and Parameter estimation (ParmVar). In ‘What is Full Potential CSS?

This concept is briefly explained. ’ Finally, if StochSD is malfunctioning, you can

restart it with or without the current model loaded.

3.2. Buttons

The buttons from left to right are discussed below.

Manipulation buttons
These buttons are for recapturing the ‘unloaded’ mouse state, deleting a block,

undoing, and redoing an operation.

 17

- Mouse

- Delete

- Undo

- Redo

Up to 10 undo steps are remembered and can be performed with the Undo and Redo

buttons.

Building block buttons (Primitives)

Here are the building blocks of a StochSD model:

- Stock

- Auxiliary

- Parameter

- Converter (a table look-up function)

- Flow

- Link

- Ghost

More about the Building blocks in Section 4.

Styling buttons
The styling buttons provides blocks for styling the model by moving the names of the

building blocks, moving the valve symbol of the flow, straighten links and for

inserting texts, Rectangles, ellipses, lines, and arrows.

- Move label around the primitive

- Move valve symbol

- Straighten a link

- Text

- Rectangle (press Shift to get a square)

- Ellipse (press Shift to get a circle)

- Arrow / Line

The label can be moved to a position North, West, South or East of its primitive.

The valve symbol can be flipped, and in a broken flow the valve symbol can be

placed at the different segments, See Figure 3.3.

Figure 3.3. The Flow valve can be flipped and moved to different flow segments.

Marking a Link and pressing the Straightening button will make it straight.

 18

Result buttons

Results can be displayed in Number boxes, Tables, Time Plots, Compare

(Simulations) Plots, XY Plots and Histogram. The Compare Plot enables plots from

two or more simulations in the same diagram.

- Number box

- Table

- Time Plot

- Compare (Simulations) Plot

- XY Plot (Plots Y versus X)

- Histogram

Execution buttons

The execution buttons control the simulation (see Section 7). These are:

- Run/Pause

- Step

- Reset

3.3. Time display, Time Unit button and Inspection field

Time display

To the right of the Execution buttons, you find a display, which shows:

You will also see an orange progress bar expand over the grey field during execution.

When the simulation is ended, the bar turns green.

Time Unit button

To the right of the Time display there is a button for the Time Unit, which must be

specified before the model building can start. It is crucial to be consistent and choose

one, and only one, time unit across the model. The chosen time unit is then displayed

on the button.

The time unit can e.g. be second, minute, hour, day, week, month, year, century, or

whatever you choose. For a generic model you can specify it as e.g. ‘Time Unit’,

‘t.u.’ or ‘tu’.

The Time Unit must contain at least one of the characters A-Z or a-z.

Inspection field

Finally, to the left under the buttons, there is an Inspection field where you can see

the definitions of a marked primitive. For example, if ‘Flow’ is defined as

‘parameterSTOCK’ this will show up as: [Flow] = [Parameter]*[STOCK] when the

Flow symbol is marked.

To the far right, you find links to the home pages of StochSD and insight Maker.

Start Time / Current time / End Time
 Method(Time Step)

 19

4. Model building
One of the most common and severe errors in model building is the confusion of the

selected time. There must be one, and only one, time unit consistently used throughout

the model. Therefore, in StochSD you cannot start the modelling until you have

specified what Time Unit you will use!

The time unit can e.g. be second, minute, hour, day, week, month, year, century. For a

generic model where you want to demonstrate a principle that is not related to a

specific time duration, you can specify it e.g. as: ‘Time Unit’, ‘t.u.’, ‘tu’ or whatever.

4.1 Primitives (Building blocks)

The primitives for building a model are: Stock, Auxiliary, Parameter, Converter,

Flow, Link and Ghost are denoted primitives.

Figure 4.1. The buttons for StochSD building blocks: Stock, Auxiliary, Parameter, Converter,

Flow, Link and Ghost.

The six first mentioned primitives are described in Chapter 2. With the Ghost button

you can duplicate any of the first four primitives (unfortunately not the Flow) to be

displayed twice or more.

The building blocks are attached to the Model window and connected to each other in

a click-and-draw manner. Before a Stock, Flow, Auxiliary, Parameter or Converter is

defined by a value or formula, it will show a question mark ‘?’.

Stock: It is usually practical to start by placing and naming the Stocks – which are the

primitives you usually (but not always) are most interested in. Then draw and name

the Flows into, out from or between Stocks. Thereafter, place and name Auxiliaries,

Parameters and Connectors. Finally, place the Links to connect primitives.

To place a Stock, Auxiliary, Parameter or Converter, click its button, place the

mouse cursor at an appropriate place and drop it by clicking again.

To create a Flow, click the Flow button, place the mouse cursor, press the left mouse

button to anchor the starting point, hold the button down and draw the mouse in

horizontal or vertical direction until it reaches its destination where you release the

mouse button.

A Flow has a start and an end point that may connect to a Stock or it will start and/or

end with a cloud symbol to show that the flow content comes from or goes to

somewhere outside the scope of the model. If the start or end point is over a Stock, it

will connect to this Stock and the cloud disappears.

A Flow can also be broken in x and y directions. This is

obtained by clicking the right mouse button during the

drawing operation.

 20

The flow may afterwards be adjusted by clicking the Flow and using the anchors (•)

at start, end and points where the Flow is broken. The anchors will show up when the

flow is marked.

Further, you can remove break points by dragging the end point (the point at the

arrow) backwards and right clicking at previous points.

The name of the flow can be moved around its valve symbol, and the valve symbol

can be flipped or moved to another segment of a broken flow as described in ‘Styling

buttons’ below.

=

A Link is used to connect two primitives. It means that one primitive

affects the other. The Link is obtained by clicking its button. Then place

the mouse cursor over a Stock, Auxiliary, Parameter, Converter or Flow

and draw it to another of these building blocks – but not to the Parameter

(a Parameter may not have incoming links). A Link can be bent into a nice

Bézier curve. When you click on a link two anchors (•) and two handles

() will be visible. Then you can grip a handle to bend the link.

A link to a stock only gives the initial value of the stock, i.e. it only

acts at ’time zero’. In System Dynamics the convention is that a link to

a stock is dashed.

To create a Ghost of a Stock, Auxiliary, Parameter or Converter, first click on the

actual building block in the Model window, then click on the Ghost button and finally

click on an appropriate place in the Model window. The Ghost is then just a graphical

copy of the original primitive with a ghost symbol inserted. (Both the primitive and its

Ghost are identical sharing the same definition).

The Ghost means that the same Stock, Auxiliary, Parameter or Converter may be

represented at two or more places in the model. A Ghost cannot have any flows or

incoming links - but it can have outgoing links!

Using a Ghosts can eliminate long connecting links tat crosses over the model making

the model look ugly and unstructured. You may also use Ghosts to assemble

information from e.g. Stocks and Auxiliaries from different parts of a model into an

‘instrument panel’ of Ghosts and Number boxes.

All Primitives can afterwards be adjusted by moving them to new positions.

The name of a primitive (Stock, Auxiliary, Parameter, Converter and Flow) is always

starting with ‘[‘ and ending with ‘]’. For example [Stock1], [Flow2], [Parameter1].

However, if you write the name without brackets, StochSD will include them. A Link

has no name and a Ghost will automatically get the same name as the primitive it

ghosts. More about naming in Section 4.3.

The default names should be renamed to be descriptive, e.g. [Rabbits], [Births per

month], [Fertility]. All names can be rotated around its symbol with the ‘Rotate

name’ button, see Section 4.2.

 21

4.2 Styling buttons

There are eight Styling buttons: To move the name label around a primitive. To move

the valve symbol of a flow. To straighten a curved Link. Four cosmetic symbols to

include Text, Rectangle, Ellipse, and Line/Arrow into the model.

Figure 4.2. The Styling buttons: Move label. Move valve. Straighten link. Text. Rectangle.

Ellipse. Arrow or Line.

With the ‘Rotate name’, the label of one or several marked primitives can be

relocated to North, West, South and East of its primitive.

The ‘Valve symbol’ of a marked flow can be flipped upside-down, and in a ‘broken’

flow also be relocated to different segments of the flow. (See Figure 3.3, above.)

The third button straightens a marked link. This can sometimes be more convenient

than using Anchors or Handles.

Text boxes, Rectangles, Ellipses, Straight lines and Arrows are created by clicking

respective button, placing it and drawing it to a proper extension at the Model

window. By pressing the Shift key when drawing a Rectangle or Ellipse you will

obtain a Square or a Circle. The size of these figures can also be adjusted afterwards.

4.3 Naming and defining relations of the primitives

When a primitive is placed, it is time to give it an appropriate name and to define its

value or relation to other building blocks affecting it.

Double-clicking a primitive opens its Dialog box where you can specify the name and

define it in terms of numbers, functions and other primitives linked to it.

Figure 4.3 shows the Dialog box for a flow named [Flow] that is affected by a

[STOCK] and a [Parameter].

Figure 4.3. To the left a small model and to the right a Dialog box of [Flow] with: 1) Name

field where the name can be changed. 2) Definition field where the value or function is

specified. A comment after # can also be written here. 3) Linked primitives: show the

primitives that must be included in the Definition field. 4) Library functions which can be

 22

used in the Definition field. 5) Check box for Restrict to non-negative values. 6) Cancel

and Apply buttons.

For the Stock, Auxiliary, Parameter and Flow the Dialog boxes are similar. (A Ghost

has the same (not just a copy) dialog box as the primitive it ghosts.)

The Dialog box contains a Name field where the name (e.g. [Stock3] or [Auxiliary5])

can be changed to a suitable name in upper- or lower-case characters. The Name

includes brackets, e.g. [Stock1], [Water_Flow], [c]. However, if you write the name

without brackets, StochSD will automatically insert them. However, in the graphical

display of the model and in tables and diagrams, the brackets are removed of

aesthetic reasons.

A Name of a primitive may only contain the characters A to Z, a to z and _

(anywhere) and 0 to 9 (if not the first character) between the brackets.

Below the Name field is the Definition field where you define a formula or a value.

Here, linked primitives and library functions can be used together with numbers and

the arithmetic operators + - * / ^ and (). Also { } are used for lists in e.g. Converters.

Further below, Linked primitives to be used in the Definition are listed. They enter

the Definition field when you click them. It is best to enter the primitives from here

with a click, because then you don’t miss the brackets. Without the brackets, StochSD

don’t understand the definition.

For Stock and Flow building blocks a check box ‘Restrict to non-negative values’ is

found at the bottom-left. (This option should seldom be used.)

To the right you find Library of functions subdivided into groups named:

Programming Functions, Mathematical Functions, Historical Functions, Random

Number Functions, and Statistical Distributions. Clicking on such a group menu will

give you a list of functions in the chosen category. These functions will be treated in

Section 10.

StochSD knows how to calculate the value of a Stock from inflows to and outflows

from the Stock defined by the graphical structure without further specification.

Therefore, a Stock only requires an initial value at ‘Time Zero’ (i.e. the time when the

simulation starts) to be entered into the definition field. Usually, the initial value for a

stock is a number, but it is also possible to initiate the Stock to the value of an

Auxiliary or Parameter linked to the Stock. The initial value may also be a random

number.

In the Definition Box you may also include a comment after a hash (#) sign.

Leave the dialog box by clicking the Apply button to realize your definition or by

clicking the Cancel button to leave the dialog box without a new definition.

If there is a mismatch between the list of Linked primitives and the primitives in the

formula (say that only [X] is used, or that you have written c*[X] instead of [c]*[X],

or you have written [c]*[X]*[Y], where [Y] is not linked), then you get a Modelling

Error message when you click the Apply button. If the definition passes some tests of

this kind, then the question mark ‘?’in the symbol of the primitive will disappear.

More about this in Section 5.2 Error checking.

 23

The Converter is a table look-up function that has its own Dialog box. Here you

define pairs: x1,y1; x2,y2; …, xn,yn of values defining an empirical function of

y=function(x). See Section 10.8.

The Link has no dialog box. It just links one primitive to another.

Commenting a relation in a primitive can be done in the definition field of the

primitive by, after the relation, writing a hash (#) followed by an explaining text as

shown in Figure 4.4. (However, this does not apply for the converter.)

Figure 4.4. Documentation of a relation by free text can be included after a hash (#).

Shift-Enter and Enter

There are three forms where you may want to continue the input on a new line:

• Definition fields of Stock, Flow, Auxiliary, Parameter and Converter

• Macro form

• Text box

In all cases, Shift-Enter gives you a new line. However, for the Definition field it is

usually better just to continue on the same line letting the field expand. However, the

simulation will not work if you break a line in the middle of a Primitive name or a

Function. In the Text box there are no such restrictions.

Enter has the same effect as pressing the Apply button.

 24

5. Equations

5.1 Defining the equation

The equation (or more correctly ‘algorithm in an assignment statement’4) is defined in

the Dialog box of a Stock, Flow, Auxiliary, Parameter or Converter.

The left-hand side of the equation is the Name of the primitive. This Name always

starts with a bracket, ‘[‘, followed by a string that may only contain the characters A

to Z, a to z and _ (anywhere) and 0 to 9 (if not the first character), and ending with a

bracket, ‘]’, e.g. [Stock1], [Water_Flow], [c]. However, if you write the name

without brackets, StochSD will include them.

The right-hand side of the equation is defined by other Primitives, Functions (always

ending with parentheses ‘()’, with or without parameters) and Numbers (which may

include a decimal point). Also, the e-format e.g. 1.7e-12 (meaning 1.7*10^12) is

allowed.

Primitives, Functions and Numbers are combined by the arithmetic operators:

+ − / ^ () for addition, subtraction, multiplication, division, power (xn) and

parentheses. As always, the calculation order is: power, then multiplication and

division, and last addition and subtraction. Parentheses ‘()’ can be used to alter this

order. Also { } are used for lists in e.g. Converters.

The equations are used exactly as you defined them with one exception. A Stock is

only directly defined by the initial value you specify, but also indirectly defined by the

in- and out-flows you graphically attached to it. If you modelled [Stock] with one

inflow [F1] and one outflow [F2], then [Stock] will be defined as: [Stock] := [Stock] +

DT()*[F1] – DT()*[F2], where [Stock](at Start Time) = Initial value. This algorithm is

called the Euler method. You can also choose a more advanced algorithm called RK4,

see the Simulation Settings menu in Section 3.1 and Section 6.

When you have defined all primitives, StochSD will automatically sort the model

equations in a proper order for updating (described in Figure 7.2, below). When all

primitives are defined in a grammatically correct way – no ?-mark in any symbol of a

primitive – you can try to run the simulation model. (However, more syntactic errors

may now be displayed when a more complete syntax check is made.)

Th model equations can be listed and printed. This is described under the Print menu

in Section 3.1. See also Figure 3.2.

5.2 Error checking

Error checking is made at three occasions:

1. Definition check. When you have defined an equation in a dialog box and

press the Apply button, a check that all primitives having an incoming link are

4 An assignment, like X := X+1, is not an equation because X can never be one unit larger than itself.

This is an assignment where the assignment sign is := or ←. However, we still use the word ‘equation’,

because the model is a numerical form of a system of differential equations.

 25

included in the equation and that no primitive without an incoming link is

included here.

Further, there is a check of unmatched bracket pairs ((…), […] and {…}).

Furthermore, there is a check that the number of arguments for some functions

are correct.

This is not a full syntax check, but if these conditions are not fulfilled, the ?-
signs in a primitive’s symbol will remain, otherwise the question mark will

disappear.

2. Syntax check. When you press the Run or Step button a full syntax check is

performed that tells you about remaining syntax errors.

3. Run-time check. Even when the model has passed the syntax check, a run-

time error may occur during the execution. For example, if you have defined

an Auxiliary with [A]/[B] and [B] gets the value zero during the execution, an

overflow will occur because of division by zero.

 26

6. Specification of the simulation

Before you execute the model, you should specify what time period to study and how

frequently recalculations of the model should be performed.

The specification of the time handling is done in the Simulation Settings menu. Here

you specify Start Time¸ Length, and Time Step for the simulation. If you don’t

want the default Euler method for the updating of Stocks, you may under specific

conditions change to the RK4 method in this menu.

The simulation then proceeds as a stepwise updating of the dynamic model from

Start Time to End = Start Time + Length as shown in Figure 6.1.

Figure 6.1. The time-handling relating Start Time, Length and Time Step (DT).

For each time step, all Stocks, Auxiliaries, Parameters and Flows are recalculated,

which will be further described in Section 7. While Auxiliaries, Parameters and

Flows are defined as algebraic expressions (based on + - * / etc.) without any

dynamic complications, updating of the Stocks are done by integration.

The integration of the Stocks is as default performed by Euler’s algorithm: X(Next)

:= X(Now) + Inflows(during Now to Next) – Outflows(during Now to Next). In

StochSD this is expressed as: X = X + DT*InFlow – DT*OutFlow. However, when the

model has a smooth development, there are more exact and efficient ways to update

the Stocks. In StochSD, such an option is the classical 4:th order Runge-Kutta

algorithm, usually abbreviated to RK4.

While Euler’s method only estimates the change (derivative) at the beginning of a

time-step (i.e. at time T), the RK4 method estimates the derivatives at T, T+½DT and

T+DT.

Choosing a proper integration method

Because Euler’s integration method will work for all kind of models it is the default

method to use. However, there are smooth deterministic models where tee RK4

method is more accurate and efficient to use. For example, in Figure 6.2 a simple

oscillator model is shown that produces X=Cos(time) and Y=Sin(time). In an XY Plot

that should give a perfect circle. However, this system is at the verge of stable. Using

Euler, this model requires a step size, DT, of about 0.001, while RK4 makes a good

job with DT=0.1 or even smaller. Figure 6.2.

DT

Now

Next

T

T+DT

Start

Time

End

 Length

time

 27

Figure 6.2. For some well-behaved models RK4 will be a good choice.

However, RK4 assumes continuity in F and its derivatives to not be fooled.

Discontinuities in InFlows or OutFlows or their time derivatives to or from a Stock,

when e.g. a Pulse, Step, Ramp, Table function etc. is involved will distort the RK4

calculations. In Figure 6.1, a Pulse delivering a unity content to an empty Stock will

give the content of 1, which it does when using Euler’s integration. However, with the

classical RK4, the Pulse may erroneously only deliver e.g. 2/3 of the content.5

Figure 6.3. An example of the fatal mistake of using RK4 for models containing

discontinuities.

For stochastic models (treated in Part II), which change randomly at each time-step,

neither Flows nor its derivatives are smooth. Then the classical RK4 will then

severely distort the results and should absolutely NOT be used.

WARNING: Do not use RK4 without a good reason, and NEVER if the model

contains discontinuities (e.g. Pulse, Step or Random numbers)!

This warning is also displayed in StochSD when you select RK4 as the integration

method.

Choosing a proper time-step

A short time-step (DT) increases the accuracy of the calculations but it also increases

the number of time-steps between Start Time and End, and thus also prolongs the

5 When RK4 is used in this Pulse example, it will work in some cases but not in other depending on the

synchronisation between actual time (calculated as Start Time+ DT + DT … + DT) and specified Pulse

time.

 28

execution time. You should, therefore, try to find a compromise where the time-step is

sufficiently short to give good accuracy - but not much shorter than this.

Theoretically, the time-step should be considerably shorter than the shortest time-

constant in the model. However, these time-constants are often complicated to

theoretically calculate. Therefore, finding an appropriate time-step is a practical task

that should be done for every new model before using it for a study.

A practical way to find an appropriate time-step of a deterministic model is the

following:

Choose a time-step and perform a simulation. Then increase or decrease the time-step

(by a factor of e.g. two or ten) and investigate if it has any important effect on the

simulation results. If the results change significantly, then continue to decrease the

time-step. (For well-behaved deterministic models, you may also consider a more

efficient integration algorithm, e.g. RK4.) If the time-step is unnecessarily short,

increase it.

For this purpose, you may use the Compare Simulations Plot described in Section 8.4,

where this is exemplified.

For a stochastic model, such a comparison is more complicated, because the outcomes

(with the same or with different DTs) will vary randomly. A heuristic way is to use a

deterministic version of the model to find a proper time-step (using the Euler method),

and then use half that time-step for the stochastic model.

Another way is to make, say 100 or 1000, replications for each time-step and then

compare the average results for the different time-steps.

Limitation of the number of time-steps

For each time-step the values of all primitives are calculated and saved. This means

that a simulation over, say, 1000 time units with DT=0.01 time unit requires 105 time-

steps to calculate and save for the primitive in the model. This produces a number of

consequences for saving, plotting and garbage collection that will slow down the

performance significantly when the number of time-steps are very large. It also means

that the simulation can require a considerable time between the calculations and the

presentation of the results in Plots and Tables.

Of these reasons, StochSD issues a note (warning) when you in ‘Simulation Settings’

specify more than 104 time-steps (calculated as Length/DT), and it refuses to accept

more than 105 time-steps per simulation.

 29

7. Simulation

A simulation of the model is performed by pressing the Run/Pause button. It is also

possible to test the model behaviour with the Step button. You can also reset the

calculations with the Reset button.

Figure 7.1. The execution buttons: Run/Pause, Step and Reset. (To the right of the buttons

the Start Time / Actual simulation time / End Time (before the run) and below the Method

and Time Step are displayed.

Pressing the Run button (►) starts the simulation. The results of the simulation is

then displayed in Number boxes, Tables, Time Plots, Compare Simulations Plots, XY

Plots, or Histograms see Chapter 8.

With the Step button (►|) you can run a single time-step at a time. Finally, (|◄)

resets the model to Time Zero (i.e. your chosen Start Time).

The calculations behind the scene during a simulation

What happens during a simulation is that StochSD, time-step by time-step,

recalculates the equation system. The working procedure used is the following (DT is

the time-step used and End Time is the Start Time + Length of simulation):

Figure 7.2. The calculations performed behind the scene.

 1. Time = Start Time

 2. The Stocks are assigned initial values

 3. GoTo 6

 4. Time = Time+DT

 5. The Stocks are recalculated (Euler or RK4)

 6. The Auxiliaries, Parameters &
 Converters are recalculated

 7. The Flows are recalculated

 8. The results for this time-step are stored

 9. If Time < End Time then GoTo 4

10. Display results

 30

8. Results presentation

To present the results of a simulation run you can use Number Box, Table, Time

Plot, Compare Simulations Plot, XY Plots and Histogram.

Figure 8.1. Result presentation buttons for Number box, Table, Time Plot, Compare

Simulations Plot, XY Plot and Histogram.

Some common features

A Table, Time Plot, Compare Simulations Plot, XY Plot or Histogram is obtained

by clicking respective result button. Then you place the cursor on a proper place on

the screen and click-and-draw the item to a proper size. Tables and plots can also

afterwards be drawn to a proper size by using the handles.

By double-clicking the Table, Time Plot, Compare Simulations Plot or XY Plot,

you can choose the values of the primitives to be displayed over the simulation run.

You can also choose to only display what happens during a selected period of the

simulation run and how often the results should be tabulated or plotted. The plots are

automatically scaled after a simulation, but you can select your own scaling. In the

plots, you can hover over a line with the mouse cursor to read the coordinates of the

points of the line. Part of the above also applies to the Histogram.

8.1 The Number Box

The Number Box is particularly useful to show the values of Stocks, Parameters and

Auxiliaries. This means that you in the Model diagram can directly see the value of a

parameter, the initial value of a Stock before the simulation or its final value after the

run. See Figure 8.2.

Figure 8.2. Use of Number Boxes. Here capital growth of 100 Euro at 4% interest after 20

years is shown. (DT=1 to create annual interest in the way the bank will calculate it.)

 31

To use the Number Box, you must first mark the primitive you want to watch. Then

click and place the Number Box.

By double-clicking the Number Box, you can select Precision and Number of

Decimals. You can also choose to show zero for very small numbers, e.g. for < 10-12.

8.2 The Table

By double-clicking on a Table, you open its Table Properties form to specify what

primitives to tabulate. Here, you can also choose to show only a part of the data and

select the time intervals between the rows.

Figure 8.3. The Table Properties form and a Table presenting the results of Interest,

CAPITAL and Growth of 100 Euro at 4% interest (from the model in Figure 8.2). Here we

have chosen to show each second year.

By double-clicking the Table you can select Precision and Number of decimals. You

can also choose to show zero for very small numbers, e.g. for < 10-12.

From the Table Properties form, you can also export your values as Comma-

separated values (CSV) or Tab-separated values (TSV) for use or analysis in e.g. a

spreadsheet.

8.3 The Time Plot

By double-clicking on a Time Plot, you open its Time Plot Properties form, see

Figure 8.4.

 32

Figure 8.4. The Time Plot Properties form and a Time Plot presenting the results of

CAPITAL and Growth (from the model in Figure 8.2). Here we have related CAPITAL to the

left y-axis and Growth to the right one. We have also added a Title.

In the Time Plot Properties form you mark what quantities to present and whether to

relate them to the left axis or to the right one. We can also add a Title and Labels for

the axes. Further, we can let StochSD to give the lines different colours, or let each

line have the same colour as its primitive. Having the same colour of the primitive and

its line in a plot reduces the risk of misunderstanding.

In a Time Plot, a Stock will be drawn with a solid line, a Flow with a dashed line and

other types of primitives with a dotted line. Finally, we can use Numbered Lines, and

choose between Thick and Thin lines.

“Show data when hovering:” means that you can read time and value of the point of

the curve your mouse hovers over.

8.4 The Compare Simulations Plot

The Compare Simulations Plot (or just Compare Plot) can display results from

different simulations in the same plot. This is especially helpful in two cases. First,

you can use it to find a proper time-step (see Section 6). Second, you can use it to see

the effect on an important output when changing e.g. a parameter or initial value.

In Figure 8.5, we show the behaviours of a logistic model (dX/dt = aX -bX2; X(0)=2,

a=1, b=0.02) for 5 simulations with different values of DT.

 33

Figure 8.5. The Compare Simulations Plot presenting the logistic growth of a population.

This device can help you to find a proper time-step, DT. Here you see that DT=2, 1 & 0.5

give a bad accuracy. DT=0.2 & 0.1 are almost similar. So, choose a time-step 0.2

(depending on the accuracy required).

The Compare Simulations Plot Properties form is similar to that of the Time Plot,

but can display results from different simulations and it has only one y-axis. Further,

you can remove one, several or all results.

8.5 The XY Plot

A XY Plot displays one quantity (y-axis) versus another quantity other than Time (on

the x-axis). In an XY Plot each point in time is displayed with its coordinates (x,y),

which makes a line when times progresses – but the time is implicit and is not shown

in the plot.

In a XY Plot you can choose between Line, Markers or both. The colour is black.

A Volterra model describes the prey-predation relation between species. In Figure 8.6

the behaviour of a simple Volterra model of Rabbits and Foxes is shown in an XY

Plot.

 34

Figure 8.6. A XY Plot of Rabbis versus Foxes in a prey-predator model.

The start- ‘’ and/or end-points ‘■’ was indicated.

In the XY Plot all combinations between Stock, Flow, Auxiliary, Parameter and

Converter will be drawn with a solid line.

In the XY Plot, markers can be used instead of a line to provide a Scatter Plot.

You can also use a line together with markers to indicate the time. You get one mark

per Plot Period, which you can specify – but if you use a Plot Period longer than DT,

you will have straight lines between the plot times. Alternatively, you can hover over

the line with the mouse cursor to display the coordinates as: (x, y, Time).

8.6 The Histogram

With a Histogram the frequency of different outcomes can be displayed. This is

particularly useful for stochastic models. For example, a student may want to study

the outcomes of a random number generator based on a given distribution and

parameter values. A more important use can be to study how often a wanted or feared

situation or event will happen. For example, how often will a water dam reach

dangerous or catastrophic levels.

In Figure 8.7 a Histogram over 10 000 outcomes of a Poisson distributed random

number generator with the parameter value 3.5 is shown.

Figure 8.7. A Histogram of 10 000 outcomes of a Poisson(3.5) random number generator.

You have also the choice to transfer this to a probability density/distribution (a pdf)

that (approximately) shows the statistical distribution normalized to an area of one.

(You can also display a fraction of the outcomes between the chosen limits.)

 35

9. StochSD model examples

Example 9.1. Filling a bathtub with an open outlet

Construct the following model to see what happens when water flows into and out

from a bathtub.

We assume the following:

1) A BATHTUB is empty at Start Time.

2) The InFlow is regulated from the Valve.

3) The Valve of the InFlow is opened to give 30 litres/minute for 5 minutes and then

 closes.

4) The OutFlow is open, so 15% of the amount of water in the BATHTUB will leave

 the tub each minute.

What will happen during the next half hour?

Specify the time unit. Time Unit: Minute

Write the equations of the model:
[BATHTUB] = [BATHTUB]+DT()*([InFlow] – [OutFlow])
[BATHTUB] = 0 (* Initial value *)
[InFlow] = IfThenElse(T()<5, [Valve], 0) (* See Section 10.1 *)
[OutFlow] = [c]*[BATHTUB]
[Valve] = 30
[c] = 0.15

Set Start Time to 0 and Length to 30 (minutes).

Set the Time Step (DT) to e.g. 0.1 (minute), so the equation system becomes updated

for each 6 seconds until the simulation is complete.

You could have chosen the Time Unit to be 1 second, 1 minute or 1 hour. But you

have to be consistent and recalculate all time data to the selected time unit!

The content of the bathtub is simulated for 30 minutes as shown in a Time Plot in

Figure 9.1.

Figure 9.1. A simple bathtub model and its behaviour. ◼

 36

Example 9.2. Rabbits on an isolated island

We wish to study the progress of a rabbit population

on an isolated island in the sea where 10 rabbits are

introduced. They eat, breed and die of old age.

The food is supplied at a constant rate of 100 kg of

carrots per month. Further, the number of rabbits born

per month is proportional to the size of the population

and to the square root of the amount of food per

rabbit and month. The fertility parameter has been

calculated to 0.2. Furthermore, the average length of

life is 20 months, which is about the same as 5% of

the population dying each month.

A so-called causal-loop diagram for the model is shown in the figure below. This is a

type of diagram often used in System Dynamics that focuses on the structure of

components and how they causally affect each other. From this diagram, you can see

positive and negative loops that generates regulation and growth, respectively. The

causal-loop diagram can then serve as a blueprint to the so-called Forrester diagram

based on Stocks, Flows, Auxiliaries, Parameters and Links.

Figure 9.3. A causal-loop diagram of the rabbit system.

From the causal-loop diagram, we can start the StochSD modelling process based on

the primitives of this language.

First, specify the time unit.

Time Unit: Month.

Then, build the model structure and define the equations of the primitives to create the

StochSD model shown to the left in Figure 9.4.

−

Square root of
Food supply per
month & rabbit

(−)

+

Food supply
per month &

rabbit

Food supply
per month

RABBIT
POPULATION

Deaths per
month

Births per
month

Fertility

Mortality

(+)

(−)

+ +

+

+

+

−

+

Figure 9.2. Picture of the system

under study when dropping the

carrots.

 37

Figure 9.4. A StochSD model of the rabbit system and a Time Plot showing the RABBIT

population over 300 (months).

The definitions of the primitives make the equation system of the StochSD model.

[RABBITS] = [RABBITS] + DT()*([BirthsPerMonth] – [DeathsPerMonths])
[RABBITS] = 0

[BirthsPerMonth] = [RABBITS]*[RootOf]*[f]
[DeathsPerMonths] =[RABBITS]*[m]

[RootOf] = Sqrt([FoodPerRabbitAndMonth])
[FoodPerRabbitAndMonth] = [FoodPerMonth] / [RABBITS]

[FoodPerMonth] = 100

[f] = 0.2
[m] = 0.05

Set Start Time to 0 and Length to 300 (months) and the Time Step to e.g. 0.5

(months).

The simulation shows the growth of the RABBIT population, seen to the right in

Figure 9.4.

We could also have used a Table and selected e.g. RABBITS, BirthsPerMonths,

DeathsPerMonths, and FoodPerRabitAndMonth. ◼

 38

10. Functions

In StochSD there are a large number of library

functions. The functions are sorted into different sub-

libraries according to categories. You find them to the

right in the Dialog boxes of a Stock, Flow, Auxiliary

or Parameter. Here, the functions are first listed as an

overview. Then a detailed presentation is then given.

The categories of functions in StochSD

1. Programming Functions

• IfThenElse (Two-way choice)

• If-Then-Else (Structured If-Then-Else function. More flexible.)

• Max (Returns the largest of e.g. [X], [Y], …)

• Min (Return the smallest of e.g. [X], [Y], …)

• StopIf (Terminates the run at a defined event)

• Function (Define a new function)

• Throwing Error (Here you can specify your own message)

2. Mathematical Functions

• Current Time

• Time Start

• Time Step

• Time Length

• Time End

• Round (Rounds to nearest integer)

• Round Up (Rounds up to nearest integer)

• Round Down (Rounds down to nearest integer)

• Pulse

• Step

• Ramp

• Sin (Argument in radians)

• Cos (Argument in radians)

• Tan (Argument in radians)

• ArcSin (Finds the arc-sine of a value. Return value in radians.)

• ArcCos (Finds the arc-cosine of a value. Return value in radians.)

• ArcTan (Finds the arc-tangent a value. Return value in radians.)

• Log (Logarithm base 10)

• Ln (Logarithm base e)

• Exp (Exponential)

• Abs (Absolute number)

• Mod (Gives remainder of the division between two numbers)

• Sqrt (Square root)

• Sign (Greater, Equal or Less than zero gives +1, 0 or -1.)

• pi 3.1415926…

• e 2.7182892…

• eps 2.22… ·10-16. Machine epsilon: the smallest number > 0.

Figure 10.1. The function categories.

 39

3. Historical Functions
• Delay (Static delay)

• Delay1 (Dynamic delay of order 1)

• Delay3 (Dynamic delay of order 3)

• Smooth

• PastMax

• PastMin

• PastMedian

• PastMean

• PastStdev

• PastCorrelation

• Fix (Samples and holds a value for specified time periods.)

4. Random Number Functions

• PoFlow (Simplified random values function for a Poisson flow)

• Rand (From a Uniform distribution)

• RandNormal (From a Normal distribution)

• RandLognormal (From a Log-Normal distribution)

• RandBernoulli (From a Boolean distribution)

• RandBinomial (From a Binomial distribution)

• RandNegativeBinomial (From a Negative Binomial distribution)

• RandPoisson (From a Poisson distribution)

• RandExp (From a Exponential distribution)

• RandBeta (From a Beta distribution)

• RandGamma (From a Gamma distribution)

• RandTriangular (From a Triangular distribution)

• RandDist (From a Customized distribution)

5. Statistical Distributions
In ‘Statistical Distributions’ you find Pdf:s, Cdf:s and Inversions of Normal,

Lognormal, t, F, Chi square, Exponential and Poisson distributions. These

distributions can be used in some advanced statistical studies. However, these

distributions will not be further discussed in this manual.

6. Converter (A primitive)
❑ The Converter is an often-useful empirical graph function (sometimes called

table-look-up function). The Converter is implemented as a primitive with its own

button located in the row of building blocks (see Section 3.2). Here you can enter

x-values to obtain y-values. Although implemented as a primitive, it behaves as a

function why it is discussed (last) in this chapter.

Note that functions have a pair of parenthesis – function(…) – to tell StochSD that

they are functions. This applies even the function has no argument (e.g. T() and DT()

for Time and Time Step). The constants Pi, e and Eps takes no parentheses.

Below you find a detailed description of these functions.

 40

10.1 Programming Functions

Syntax: IfThenElse(Test Condition, Expression if True, Expression if
False)

Result: If the logical Condition is True then the first Expression is evaluated

and its Value is returned, if it is False then the second Expression is

evaluated and its Value is returned.

Example: If(A < B, A, B) returns the smallest of A and B.

Example: If(A < B, 5, 2*Sqrt(25)) returns 5 if A < B, otherwise 10.

Logical operators are: , , =, =, = and (‘not equal to’), AND, OR.

Syntax: A B, A B, A = B, A = B, A = B, A B, X>=A AND X>B

Example: A B will return True if A B and False if A = B.

Syntax: If Condition Then

 Expression

Else If Condition Then

 Expression

Else

 Expression

End If

Result: Tests one or more conditions and selectively executes code based on

these tests.

Example: In a model the initial number of Stock (S) at time zero is

unknown. In 60% it is expected to be S(0)=1, in 30% to be S(0)=2

and in 10% to be S(0)=3 persons. Then you can draw a uniformly

distributed random number between 0 and 1 and use this to initialize

the Stock at time zero.

 If Rand() < 0.6 Then
 1
Else If Rand() < (0.6+0.3) Then
 2
Else
 3
End If

Compare with the simple IfThenElse function, above, which only has two options.

IfThenElse – Two-way IfThenElse function

If-Then-Else – Structured If-Then-Else function

 41

Syntax: Max([X], [Y], …)

Result: Returns the largest value in the list.

Syntax: Min([X], [Y], …)

Result: Returns the smallest value in the list.

Syntax: StopIf(Condition)

Result: If the Condition becomes True, then the simulation run is terminated

after the current time-step.

Example: StopIf([X] < 0.5)
[When the [X] goes below a certain value (e.g. 0.5) the simulation

run terminates.]

Syntax: Function Name()
 Expression
End Function

Result: Creates a reusable function. Especially useful as a Macro – see

Chapter 11.

Example: Cube(x) # defined as a Macro [In]: T() # in the Model

 x*x*x

End Function [T3]: Cube([In])

 Gives: 0, 1, 8, 27, 64, … for DT=1

Syntax: Throw “YOUR MESSAGE”

Result: If the foreseen error occurs, then the simulation run is terminated

and YOUR MESSAGE is shown.

Example: See Figure. Note, Run (►) is pressed the simulation will be aborted

and your message is shown. Here the simulation was run stepwise

(►|) why you also se the table values before the abortion. After 4

time units X was smaller than Out why, in the next step X becomes

negative and Out = Sqrt(Negative number) causes the abortion.

Max – Maximum function

Min – Minimum function

StopIF – StopIf function

Function – Define a new function

Throw Error – Error message function

 42

(DT=1 was used.) Here the Table values was displayed DT by DT

using the step button (►|) to display the timesteps before the crash.

Note: Alternatively, this could have been prevented by checking:

“ Restrict to non-negative values” in the Definition box for [X].

10.2 Mathematical Functions

Syntax: T() or T

Result: Gives the current simulation time.

Syntax: TS() or TS

Result: Gives the start time for the simulation. This value is

specified in the Simulation Settings form.

Syntax: DT() or DT

Result: Gives the step-size used for the simulation. This value is

specified in the Simulation Settings form.

Syntax: TL() or TL

Result: Gives the length in time for the simulation. This value is

specified in the Simulation Settings form.

T – Current time

TS – Start time for the simulation

DT – Step-size

TL – Time length of simulation

 43

Syntax: TE() or TE

Result: Gives the End time for the simulation.

TE() = TS() + TL().

Round - Rounding function

Round([X]) Rounds [X] to its nearest integer.

Round Up - Rounding up function

Ceiling([X]) Rounds [X] up to its nearest integer.

Round Down – Rounding down function

Floor([X]) Rounds [X] down to its nearest integer.

Syntax: Pulse(Time, Volume, Repeat)

Result: Creates a pulse input at the specified Time with the specified

Volume. Repeat is optional and will create a pulse train with the

specified Repeat as interval if positive. With a negative Repeat

value you get only a single pulse at Start.

Example: Pulse(2, 1, 4) generates repeated pulses with the Volume: 1, start-

ing at time=2 and then repeating each 4 time units, see Figure 10.2.

Figure 10.2. A Pulse.

An ideal pulse is infinitely high and infinitesimally wide, so that the

Height*width equals the specified Volume. The smaller time-step -

the better the approximation of an ideal pulse.

The graph in the figure is shown for the time-step = 1 time unit. (For

e.g. time-step = 0.1 the pulse will be 10 times higher and have a

tenth of the width. The interval between the pulses will still be 4

time units – which now is 40 time-steps.)

TE – End time for simulation

Pulse – Pulse function

Time

Volume

Time-step

Start

Interval

Time-step

 44

Note the difference between what happens mathematically (grey

rectangles) and what it looks like in a graph where the lines (dashed)

are connected to the values (dots) at each time-step.

[The Pulse replaces the awkward Pulse in Insight Maker where the

pulse-content (volume) changes when you adjusted the time-step.]

Syntax: Step(Start, Height)

Result: Generates a step at time Start with amplitude Height. That is, it returns

0 if TIME < Start, and Height otherwise. See Figure 10.3.

 Figure 10.3. The Step function.

Syntax: Ramp(Start, Finish, Height)

Result: Generates a ramp, which at Start goes linearly from 0 to Height

between the Start and Finish times. Before Start the value is 0; after

Finish the value is Height.

Sin([X]) Note: [X] in radians. (Sin([X]*180/Pi) for [X] in degrees.)

Cos([X]) Note: [X] in radians. (Cos([X]*180/Pi) for [X] in degrees.)

Tan([X]) Note: [X] in radians. (Tan([X]*180/Pi) for [X] in degrees.)

ArcSin([X]) Note: Return value is given in radians.

(180/pi*ArcSin(..) for degrees.)

Step - Step function

Ramp - Ramp function

Sin - Sinus function

Cos - Cosinus function

Tan - Tangent function

ArcSin – Arcus Sinus function

 45

ArcCos([X]) Note: Return value is given in radians.

(180/pi*ArcCos(..) for degrees.)

ArcTan([X]) Note: Return value is given in radians.

(180/pi*ArcTan(..) for degrees.)

Log([X]) The 10-logarithm

Ln([X]) The e-logarithm

Exp([X]) Exponential function base e.

Abs([X]) The absolute value of X.

[X] mod [Y] Returns the remainder of X/Y. 13(mod 5) = 3

Sqrt([X]) Square root of X.

Sign([X]) Returns -1 for X<0, 0 for X=0, +1 for X>0

pi The constant 3.14159265...

e The constant 2.71828183…

epsilon The smallest value (Machine epsilon, 2.22…·10-16)

ArcCos – Arcus Cosinus function

ArcTan – Arcus Tangent function

Log – Logarithm base 10 function

Ln – Logarithm base e function

Exp – Exponential function

Abs – Absolute value function

Mod – Modulus function

Sqrt – Square root function

Sign – Signum function

pi – The number

e – The number e

eps – The smallest number that can be represented

 46

10.3 Historical Functions

Functions that depend on what has happened earlier are called Historical Functions.

Short Introduction to delays

A delay is, for example, the time from which a product is ordered until it is delivered, or

the time from which a person becomes infected until he becomes sick. Also, information

can be delayed, for example, the time to deliver a message. A delay can be static or

dynamic.

A static delay just delays the time from an input to an output without changing the

time variations of the input. StochSD has the static delay: Delay([Primitive], Delay
Length, Default Value). Because the Delay looks Delay Length time units back, it

needs a Default Value as long as it looks at a time before the Start Time of the

simulation.

A dynamic delay is a dynamic subsystem that contains a series of stocks and flows.

The number of stocks in that subsystem is the order of the delay. The main delays in

StochSD are: Delay1([Primitive], Delay Length, Initial Value) and

Delay3([Primitive], Delay Length, Initial Value). See the Figure 10.4 where

Delay3([Pulse_In], 6, 0) is used.

Figure 10.4. A delay of order 3 (with a total delay time of 6 time units) can be obtained in

different ways:

1) By connecting three stocks in a series, each of the three stocks delays by 2 time units.
2) By using the Delay3 function, which here connects ‘Pulse_In’ to the outflow ‘Out’:

[Out]= Delay3([Pulse_In], [DelTime], 0). (A stock, here called DUMMY, because it is not

involved in the delaying process, may or may not be included. It is merely placed between the

2

)

1

)

3

)

 47

inflow and the outflow, so that it is filled by Pulse_In and drained by Out. DUMMY will then

have the same content as Stock1+Stock2+Stock3.)

3) Also, signals can be delayed in the same way: [Signal_Out]= Delay3([Pulse_In], 6, 0).

List of Historical functions

Syntax: Delay([Primitive], Delay Length, Default Value)

Example: Delay([Income], 6, 1000)

Returns the value of a primitive for the specified length of time ago. Default Value

stands in for the primitive’s value in the case of negative times. (E.g. at time=0, this

function looks back at time=-6, which in this example is defaulted to 1000. Skipping

to define a proper Default Value may cause problems that are hard to trace!)

Syntax: Delay1([Primitive], Delay Length, Default Initial Value)

Example: Delay1([Inflow], 6, 0)

Returns a smoothed, first-order exponential delay of the value of the primitive.
The Initial Value is optional.

Syntax: Delay3([Primitive], Delay Length, Default Initial Value)

Example: Delay3([Inflow], 6, 0)

Returns a smoothed, third-order exponential delay of the value of the
primitive. The Initial Value is optional.

Syntax: Smooth([Primitive], Length, Default Initial Value)

Example: Smooth([Inflow], 6, 0)

Returns a smoothing of a primitive’s past values. Results in an average curve
fit. Length affects the weight of past values. The Initial Value is optional.

Syntax: PastMax([Primitive], Period = All Time)

Delay – Static Delay function

Delay1 – Delay function of order 1

Delay3 – Delay function of order 3

Smooth – Smoothing function

PastMax – Maximal value over a past period.

 – For statistics over all or a part of a simulation

 48

Results: Calculates the maximal value of a primitive over the specified past

Period. If the Period is omitted, it shows the maximum sofar over

the whole replication.

Example: PastMax([X]) will create a function that displays the first value of

X after one time-step, the largest value of X in the past two time-

steps, and so on until the replication is over when the largest value

of X is shown.

Example: PastMax([X], 5) will create a function that starts as in the example

above, but after 5 time units or more displays the largest value

during the last 5 time units.

Syntax: PastMin([Primitive], Period = All Time)

Results: Calculates the minimal value of a primitive over the specified

Period.

Syntax: PastMedian([Primitive], Period = All Time)

Results: Calculates the median value of a primitive over the specified

Period.

Syntax: PastMean([Primitive], Period = All Time)

Results: Calculates the mean value of a primitive over the specified Period.

Syntax: PastStdev([Primitive], Period = All Time)

Results: Calculates the standard deviation of a primitive over the specified

Period.

Syntax: PastCorrelation([Primitive1], [Primitive2], Period = All Time)

PastMin – Minimal value over a past period.

 – For statistics over all or a part of a simulation

PastMedian – Median value over a past period.

 – For statistics over all or a part of a simulation

PastMean – Mean value over a past period.

 – For statistics over all or a part of a simulation

PastStdev – Standar deviation over a past period.

 – For statistics over all or a part of a simulation

PastCorrelation – Correlation between two quantities over a past period.

 – For statistics over all or a part of a simulation

 49

Results: Calculates the correlation between two primitives over the specified

Period. The last argument is optional.

Syntax: Fix(Value, Period)

Results: A device to sample and hold values for regular periods of time. The

last argument is optional. If last argument is missing or -1, then the

first value is fixed.

Example: Fix(Rand(0,10), 5) will draw a random number between 0 and 10

that remains fixed for 5 time units at a time.

10.4 Random Number Functions

Here the most common random number functions are presented. In many simulation

languages, random number functions include a seed that defines the initial value of

the random number sequence. In StochSD the seed is set globally, which can be done

by a macro. See Example 11.2.

Stocks, Flows, Auxiliaries and Parameters can all contain randomness. When this is

the case, a dice will be shown in the primitive.

Syntax: PoFlow(FlowRate)

Result: Generates a Poisson distributed random flow with a mean of

FlowRate. The result is always an integer 0.

Example: PoFlow([c]*[X]) is a shorter, more practical and more readable form

for RandPoisson(DT()*[c]*[X])/DT().

DT()*PoFlow() is used to produce a random number of events (e.g. arriving

customers, people getting infected, cars passing a bridge) in a flow during a time-step.

Syntax: Rand(Min, Max)

Result: Generates uniformly distributed random numbers between Min and

Max. Rand() gives uniformly distributed random numbers between

0 and 1.

Example: Rand(5, 17) gives uniformly distributed random numbers between

5 and 17.

Fix – A device to sample and hold values for regular periods of time.

PoFlow - Poisson distributed flow

(This function is an addition to the Insight Maker functions.)

Rand - Uniformly distributed random numbers

 50

Syntax: RandNormal(Mean, Standard Deviation)

Result: Generates normally distributed random numbers with a specified

Mean and Standard Deviation.

Example: RandNormal(3, 0.5) gives normally distributed random numbers

with a mean of 3 and a standard deviation of 0.5.

Syntax: RandLognormal(Mean, Standard Deviation)

Result: Generates log-normally distributed random numbers with a

specified Mean and Standard Deviation.

Syntax: RandBernoulli(Probability)

Result: Generates exponentially distributed random numbers that returns 1

with the specified Probability, and 0 otherwise.

Example: RandBernoulli(0.5) can be used for the flipping of a symmetric

coin.

Syntax: RandBinomial(Count, Probability)

Result: Generates a binomially distributed random number, which is the

number of successes from Count trials, each with the specified

Probability of success. The result is always an integer 0.

Example: RandBinomial(10, 0.3) gives a binomially distributed random

number of successes from 10 trials, each with the expected value of

0.3.

Syntax: RandNegativeBinomial(Successes, Probability)

Result: Generates a negative binomially distributed random number. The

number of random events, each with Probability of success required to

generate the specified Successes.

RandNormal - Normally distributed random numbers

RandLogNormal - Log-normally distributed random numbers

RandBernoulli - Binary distributed random numbers

RandBinomial - Binomially distributed random numbers

RandNegativeBinomial - Negative Binomially distributed random numbers

 51

Syntax: RandPoisson(Lambda)

Result: Generates a Poisson distributed random number with a mean of

Lambda. The result is always an integer 0.

Example: RandPoisson(5) gives Poisson distributed random numbers with a

mean of 5.

RandPoisson can be used to obtain the number of events during a time interval.

Syntax: RandExp(Lambda)

Result: Generates exponentially distributed random numbers with a rate:

Lambda. The result is always an integer 0.

Example: RandExp(5) gives exponentially distributed random numbers

between 0 and infinity with a mean of 1/Lambda=1/5=0.2. (If there

arrive 5 customers per hour, then the distance in time between the

customers is 1/5 = 0.2 hours on average.)

RandExp can be used to obtain the distance in time between successive events when

the rate of events is Lambda. Rate Lambda implies that the expected distance between

events is 1/Lambda.

Syntax: RandBeta(Alpha, Beta)

Result: Generates Beta distributed random numbers.

Syntax: RandGamma(Alpha, Beta)

Result: Generates Gamma distributed random numbers.

Syntax: RandTriangular(Minimum, Maximum, Peak)

Result: Generates triangularly distributed random numbers between

Minimum and Maximum with the largest value at Peak.

Example: RandTrangular(5, 12, 10) gives triangularly distributed random

numbers between 5 and 12 with peak value at 10.

RandPoisson - Poisson distributed random numbers

RandExp - Exponentially distributed random numbers

RandBeta - Beta distributed random numbers

RandGamma - Gamma distributed random numbers

RandTriangular - Triangularly distributed random numbers

 52

Syntax: RandDist(X, Y); where X and Y are two vectors of x- and y-values.

Result: Generates random numbers according to a custom distribution (an

empirical distribution, usually obtained from real measurements).

The customized distribution is specified by a sequence of x-values

{x1, x2, …, xn} and a sequence of the same number of y-values

{y1, y2, …, yn} where the sequences are separated by a comma.

The Points between the defined coordinates are linearly interpolated.

The distribution does not have to be normalized such that the area

under the curve is 1, but the points must be sorted from the smallest

to the largest value of xi ; i=1, 2, …, n.

Example: RandDist({0, 1, 2, 3, 4}, {0, 2, 1, 7, 3})

10.5 Statistical Distributions

In ‘Statistical Distributions’ you find Pdfs, Cdfs and Inversions of Normal,

Lognormal, t, F, Chi square, Exponential and Poisson distributions. These

distributions can be used in some advanced statistical studies. However, these

distributions will not be further discussed in this manual.

10.6 Converter

(Table look-up function)

The Converter is a Table look-up

function of the type y = f(x). (Of course,

you can use any names for x and y.)

The Converter is implemented as a

primitive with its own icon. Click on the

converter button, which gives you a six-

sided figure. Double-click the Converter

to Define the data pairs xi ,yi. The data

pairs must be separated by semicolon.

(Space between each pair can be inserted to make the table more readable.)

Figure 10.5. Weekly statistics of Covid19 in Sweden. x in weeks and y in deaths/week.

RandDist - Custom distributed random numbers

 53

This means that you can use empirical data in your model, taken from statistics or

measurements, which you can’t describe by a function in the function library. For

example, you may want to use the empirically known Temperature as function of

Time, or Fertility as function of Food supply in your model expressed in tabular form.

The input to the Converter (x, time, temperature, amount of water, or whatever) can

be taken from a Parameter, Auxiliary, Flow, Stock, or even from another Converter.

The output is the empirically defined y=f(x). The function f is defined by coordinate

pairs x,y separated by ‘;’ (and for readability, you can also include a space), e.g.:

0,2.7; 0.5,3.4; …; 9.5,18.3; 10,14.1. The x-values don’t have to be equidistant, but

the xy-pairs must be written in an ascending order of the x-values. The more precisely

you want to describe the function, the more xy-pairs you need.

- For x-values below the first one, the output will keep the y-value of the first pair.

- For x-values above the last one, the output will keep the y-value of the last pair.

- For x-values in between the table values, interpolation is used.

Example: Easy way to include statistics with another time unit than your model’s.

In a StochSD study the number of deaths per day in Covid19 in Sweden during the

first 406 days (58 weeks) was modelled. The model thus used the time unit: Day.

To fit the model, real statistics in deaths per Week was available and included in a

Converter. Because the time unit for the model was Day, and the statistics

(implemented in the Converter) was per Week, it was easiest to drive it by an

Auxiliary x=T()/7, requiring 7 days to go to the next week. Also, the Converter output

was cases per week – but since the model was defined for days, the Converters output

is rescaled to y=f/7. (Although, x was denoted Week, f was denoted MortStat, and y

was denoted DeathsPerDay.) See Figures 10.6.

Figure 10.6. Daily statistics of Covid19 in Sweden using the weekly statistics from the

Converter in Figure10.5.

 54

11. Macro Functions
Macro allows you to define your own functions that can be used in the model. Click

the Macros menu to open a form to write the code.

Figure 11.1. In the Macro form, you can define a macro function of your choice. It can also

be used to make a stochastic simulation reproducible by selecting a Seed (a number that

initiate the random number generators) and click the button SetRandSeed.

Macros can be used in the definition of a primitive, just like a function. A macro can

be created in two forms (Example from the Insight Maker manual).

A single-line macro has the syntax: Myfcn <- functional expression.

 myFcn(a, b, c) <- sin((a+b+c)/(a*b*c))

Example 11.1 Defining a Poisson flow in a simplified way

In Section 10.45 we added PoFlow(Lambda) as a simpler to write function for

Poisson(Dt()*Lambda)/DT(). If this function had not been available, you could have

introduced it as a macro:

 PoFlow(Lambda) <- RandPoisson(Dt()*Lambda)/DT().

Then you can use it in a flow as e.g.: PoFlow(4) or PoFlow([X]) or PoFlow([p]*[X]).
◼

Example 11.2 Defining an expression

A multi-line macro with parameters a, b and c has the syntax:

 55

Function myFcn(a, b, c)
 x <- (a+b+c)
 y <- (a*b*c)
 return sin(x/y)
End Function

This can then be used in e.g. an Auxiliary as: myFcn(4, [X], [Y]). ◼

Example 11.3 Making a stochastic simulation run reproducible

A macro can also be used to lock random number sequences so that each simulation

of a stochastic model will have the same behaviour.

To make a stochastic simulation model reproducible, you have to lock the seed for the

random number generators in the model. Then the same sequences of random

numbers will be generated for each simulation run. Just click the Macros button,

define the Seed and click the SetRandSeed button, or write e.g.:

 SetRandSeed(13)

By changing the argument, you will get another (reproducible) simulation run.

To unlock the Seed you must manually delete the SetRandSeed(Seed) statement.

Note: You don’t find SetRandSeed(Seed) in the Function library where you define

a primitive, because this function does not belong to any primitive but is a global

function of the model. Instead SetRandSeed(Seed) is defined in a macro by

specifying the argument, Seed, of the SetRandSeed function.

Note: Setting the global parameter Seed will only make your model instance

reproducible. If you build the same model with the primitives created in a different

order, the same Seed would produce another (but for this new model reproducible)

result.

The reproducible result may also be altered (but still reproducible) if you make

changes in your model or changes the step size, DT. ◼

 56

12. Practical tips
Read these tips carefully. It will spare you a lot of trouble and make your modelling

better.

StochSD-Desktop or StochSD-Web

If you do more than just test StochSD or want to use it quickly without an installation,

try StochSD-Web. Otherwise download the StochSD-Desktop version so that you

more easily can work with your files locally.

Adjust your screen

• You can zoom in and out with Ctrl+ and Ctrl- to obtain a proper size of your

model.

Model building

• Perhaps the most common trouble in simulation originates from confusion about

the units used. In particular this applies to time. Therefore, StochSD will force you

to define a one-and-only time unit to be used in all equations of the actual model

before you can start the model building. So chose the time unit with care (second,

minute, day, year or even Martian fortnight) and then be consistent and use only

this time unit!

• If you want to place many primitives of the same kind, e.g. Stocks, then you can

right-click the Stock button and place a new Stock for each left-click. You leave

this mode by a new right-click.

• You can fine-adjust the position of a primitive by high-lighting it and use the arrow

keys.

• When you connect a Flow to a Stock, be sure that the connecting flow will be

attached. The Cloud at the connected end will then disappear.

• Give each primitive a proper name. This will support your thinking and make it

easier to communicate the model and its results to others.

• The arrow of a flow points in the positive direction. This means that when a flow

has a positive value it goes in the direction of the arrow, and when its value is

negative it goes in the opposite direction. For example, the flow direction of

[Flow]=Sin(T()) will alternate over time.

• A Flow can only be drawn in x- and y-directions. However, you can break the flow

in right angles by clicking the right mouse button while drawing the flow. This is

particularly useful when you have several flows between stocks.

• A link is represented by a so-called Bézier-curve that can be bent into a smooth

curve. You should use this of aesthetic reasons – for example, you don’t want to

cross over other symbols. To do so, click on the link and use its handles () or

anchors (•) to form the link.

• A primitive will show a question mark ‘?’ if there is no ‘equation’ in the definition

field, or if all links are not used in the formula, or if unlinked primitives are used in

the definition. It also keeps the question mark if there are unmatched brackets in

the defining formula. However, the absence of a question mark does not guarantee

that the formula is syntactically correct.

 57

• Sometimes the displayed model will look messy because of links crossing the

model because the primitives to be connected are far away. In such a case you can

create a ‘Ghost’ of a primitives Stock, Auxiliary, Parameter, Converter (but not of

a Flow) at a proper place and draw a link from this ghost instead. (Remember that

a Ghost can only have outgoing links.) To use a ghost, mark the primitive you want

to ghost before clicking the Ghost button.

Simulation Settings

StochSD is based on JavaScript and runs in a web browser. This browser

administrates garbage collection (restoring used memory space) outside your control

which requires time. The following point is therefore important:

• Don’t use smaller time-step (DT) than necessary (and of course not too large). The

time of the execution depends mainly on the Length, DT and the size of the model.

This dependency is about the square of ModelSize*LENGTH/DT. Of this reason

LENGTH/DT gives a warning when ≥ 10 000 and is limited to 100 000 time-steps.

• The Compare Simulation Plot is a powerful device to study the effect of different

step-lengths. Use this to find a proper value of DT.

Running the model

• If running the simulation ends with an Error Message and you don’t know where

or why the error happened, then you can step (►|) DT by DT while you display the

values of the interesting primitives in a Table. (For a small DT it may be many

steps!)

• For large models with many time-steps, the time after the calculations until Plots

and Tables are drawn can be considerable (even larger than the calculation time

that you can follow as a horizontal bar above the canvas) and even take minutes.

Do not intervene with the model during this time.

• It may happen that StochSD gets stuck when you reopen the PC after having

closed it or put it to rest. Clicking the StochSD icon at the bottom of the screen will

then minimize StochSD and the next click on the icon will restore it.

• If the model becomes slow, open the Help menu and click Restart and Keep

Model, and run the model again.

Result presentation

• Remember that the colour of a primitive will be used for the line of this primitive

in a Time Plot, Compare Plot and area of Histogram when the ‘Colour from
Primitive:’ box of the Plot or Histogram is checked.

• For documenting a smaller model, you may first select Print/Print Equations and

place these equations at a proper place on the screen (perhaps after reducing the

size by Ctrl-). Then select Print/Print Diagram so you can print both Diagram and

Equations on the same sheet of paper.

 58

13. References to deterministic CSS modelling

[1] [Forrester, J.W. (1961) Industrial Dynamics. Cambridge, MIT Press, MA. (The

book where System Dynamics was introduced.)

[2] Meadows, D.H. (2008) Thinking in systems: a primer. White River Junction, Vt:

Chelsea Green Pub. (An excellent first introduction to System Thinking and System

Dynamics.)

[3] Fortmann-Roe, Scott. (2014) Insight Maker: A General-purpose tool for web-

based modeling & simulation. Simulation Modelling Practice and Theory, 47, 28-45.

http://www.sciencedirect.com/science/article/pii/S1569190X14000513

[4] The Manual for Insight Maker. (Here you find more features (e.g. functions) that

are supported but not described in StochSD. Note however that only the System

Dynamics part of Insight Maker is supported in StochSD.)

https://insightmaker.com/book/export/html/40

[5] Home page for Insight Maker: https://insightmaker.com/

http://www.sciencedirect.com/science/article/pii/S1569190X14000513
https://insightmaker.com/book/export/html/40
https://insightmaker.com/

 59

Part II. Stochastic modelling with StochSD

Extended purpose: To build dynamic and stochastic models and simulate their

behaviours.

Extended worldview: The world consists mainly of two kinds of fundamental

primitives: Stocks and Flows. However, lack of information requires stochasticities

to be included!

Stochastic modelling is an extension of deterministic modelling where you should

handle the uncertainties in a statistically correct way. This extension has several

important consequences:

Stochastic modelling makes Compartment Based Modelling (in e.g. StochSD)

consistent with other types of simulation if you consider the following:

• Continuous matter should be described as a continuous and infinitely divisible

amount, and discrete objects should usually6 be modelled as a number of

indivisible entities.

• Uncertainties must be included in a statistically correct way, rather than using

average estimates as in a deterministic model.

• A stochastic model will produce different results for each run, which reflects

the underlying uncertainties of the model’s behaviour. Therefore, many

simulations of the model are required followed by a statistical analysis of the

results. StochSD has the tool, StatRes, which does this.

• With a stochastic model you can estimate variations in the results, and also

calculate confidence intervals and other statistics.

• Never use the RK4 method in a stochastic model.

6 Modelling is a pragmatic activity. If the number of objects, e.g. water molecules in a river, is very

large then the water can be regarded as a continuous and ‘infinitely’ divisible matter. In particular, the

law of large numbers then tells that a standard deviation is negligible compared to the average number

(of water molecules) why transition stochasticity will disappear.

 60

14. Stochastic modelling

14.1 A historic note and the motivation for StochSD

Simulation languages for digital computers were introduced from around 1960. There

are two main forms Discrete Event Simulation (DES) that is based on a micro

approach where each individual or entity is to be represented, and Continuous

System Simulation (CSS) that is based on a macro approach (of which StochSD is an

example). In classical CSS both continuous matter and individual objects were

described as a continuous and infinitely divisible matter, which was lumped into

compartments (stocks). Only the amount in each compartment is then represented.

However, when modelling the same system under study, a DES and a CSS model

often produced inconsistent results (i.e. results that contradicted each other). During

the remaining of the 20ies century this was an issue of concern and discussion.

In a series of papers between 2000 and 2017 the reasons for these inconsistencies

were analysed and resolved (see references [6] to [12] in Section 17). In particular, the

conditions for a deterministic CSS model to produce unbiased results were

investigated [10]. In these papers, the importance of modelling continuous matter as

continuous amounts and discrete objects as discrete numbers was demonstrated.

Further, it was shown how to handle attributes, how to achieve adequate sojourn-time

distributions in stages, how to handle different types of stochasticity, and how to

model queues in CSS. It was also shown that following some basic rules for these

issues in CSS modelling will make CSS models consistent with DES models.

Furthermore, this approach opened the possible for combined discrete and continuous

modelling and simulation within CSS.

It was also shown that different types of simulation (Agent-based, Entity-based,

Compartment-based (i.e. CSS) and Situation-based (e.g. Markov models) could all

produce mutually consistent results. Furthermore, it was demonstrated how these

model types are related and how they can be translated into each other. Finally, the

pros and cons of choosing one of these types instead of another were investigated.

In “The full potential of Continuous System Simulation modelling” [12], the rules for

correct CSS modelling were presented and exemplified.

In short, Full Potential CSS modelling extends classical CSS by:

• Including discrete entities and giving the algorithm for transition between

compartments,

• Preserving the sojourn time distribution of a stage by representing it with a

structure of compartments in series or parallel,

• Correctly implementing the attributes of the entities by parallel but

interconnected sub-models,

• Proper handling of the different types of uncertainties.

This knowledge can be applied using other CSS languages where proper random

number generators are included. However, stochasticity will require multiple

simulation runs followed by a statistical analysis and various forms of result

presentation.

 61

In order to apply Full Potential CSS, StochSD was developed.

StochSD contains several modelling tools, see [13] to [16]. In particular, the tool

StatRes (see Section 16.1) will order multiple runs of a stochastic model, collect the

results, analyse and present statistics from the multiple runs.

14.2 What is stochasticity?

Every modelling study must have a well-defined purpose. The art of modelling is

based on only describing what is relevant for this purpose. However, in modelling you

often have to deal with incomplete information.

Lack of information (uncertainty) can be handled in two ways:

1) You can ignore that you have incomplete information. For example, you can

replace unknown variations by an average value, and hope that not too much damage

is done, and that no one will notice. For example, if there is a dice involved, the

possible outcomes 1, 2, 3, 4, 5 and 6 are always replaced by the average value (3.5).

By including the statistical knowledge, you can make better models.

2) You can handle lack of information by at least including the information you have,

often in form of a probability density (or distribution) function (pdf). Then random

numbers can be drawn from this pdf to produce stochasticity in the model. For

example, a dice is described by a probability distribution function that has equal

probabilities for the outcomes 1, 2, 3, 4, 5 and 6. A random number is then used to

decide the outcome for each throw. This is the correct way of handling incomplete

information. Then the model includes the information you actually have!

14.3 Five types of uncertainty about the system under study

Five types of uncertainty about a system under study may have to be handled in a

model building study. These are:

• Structural uncertainty – incomplete knowledge about the structure of the

 system under study and about how the components

 interact.

• Initial value uncertainty – incomplete information about the initial conditions

 at ‘time zero’.

• Transition uncertainty – incomplete information about when events will

 happen (e.g. customers will arrive, vehicles will

 pass a bridge, persons get sick).

• Parameter uncertainty – incomplete information about the impact from the

(Environmental uncert.) Studied system’s environment and how this impact

will vary over time (e.g. when and how much it

will rain).

• Signal uncertainty – incomplete knowledge about transferred infor-

 mation. (A signal can be delayed or distorted.)

 62

Each of these uncertainties will affect the results of a model study. The more

uncertainty about structure, initial conditions, transitions, parameter values and

signals, the more uncertain the results will become.

14.4 Why including uncertainties in the model?

The short answer is that uncertainties contain more information than just averages,

and this information can be important for the model’s behaviour!!

The uncertainties must be incorporated in the model to produce realistic estimates of

min values, max values, averages, standard deviations, confidence intervals, etc. A

deterministic model will just ignore this information. Furthermore, the excluded

information may in some cases cause biased results, or eliminate important

phenomena that might occur in the studied system such as extinction of a species or

that a weaker force defeats a stronger one.

Also, when you choose to use a deterministic model, you must be sure that the

important results of a deterministic model agree with those of a stochastic one. But

even then, you will lose all statistic information.

While a deterministic model only has to be run once since it always will produce the

same behaviour, a stochastic model will produce a different behaviour for each

replication (simulation run). Therefore, a stochastic model must be executed a large

number of times so that the uncertainties of the model behaviour can be studied.

Multiple replications of the model will generate a probability density/distribution

functions (pdf) for each outcome. From these pdfs, all kinds of statistics can be

deduced, e.g. estimates of Min and Max values, Median values, Percentiles, Averages

and Standard deviations, Confidence intervals, etc., and joint pdfs provide Correlation

between outcomes. In StochSD this is swiftly obtained by the StatRes tool.

14.5 How to model uncertainties

A compartment-based model is constructed by stocks, flows, auxiliaries &

parameters7, and links. There can be uncertainty related to each of these primitives,

but also uncertainty about the structure of the model.

Now, we use an example to demonstrate how and where different types of

stochasticity can enter into a compartment-based model.

Example 14.1 Uncertainties in a SIR model

 A classical SIR model is an epidemic model composed of three stages: S (for

Susceptible), I (for Infectious), and R (for Recovered). The following is assumed:

7 Auxiliaries and parameters are only distinguished in order to show if they mirror a part of the system

under study or its environment – see footnote 2 in Section 2. From the uncertainty point of view, there

is no distinction.

 63

A Susceptible person has the probability p to become infected by an Infectious one at

each time unit. Furthermore, an Infectious person will recover and become immune

after on average T time units.

A classical SIR model, where each stage is represented by a single compartment, is

shown as ‘Structure 1’ in Figure 14.1. This (oversimplified) model is used to discuss

the five types of uncertainty mentioned above.

Figure 14.1. A classical SIR model where the stages S, I and R are represented by single

compartments. The stocks are initiated to S0, I0 and R0. The transition flows are denoted F1

and F2, and the parameters are denoted p and T. Dice show where randomness to describe

uncertainty can be located.

The five possible types of uncertainty, Structural, Initial value, Transition,

Parameter, and Signal uncertainties, will all be recognized for this example. The

structural uncertainty refers to the description of the system under study in terms of

an appropriate model structure of stocks, flows, parameters and links, while the other

four uncertainty types refer to the different primitives within the chosen model. Initial

uncertainty relates to stocks, Transition uncertainty relates to flows, Parameter

uncertainty relates to auxiliaries or parameters, and Signal uncertainty relates to

(information) links.

1. Structural uncertainty

The structural description of the SIR model can be questioned.

One structural possibility is that an infected person does not immediately become

infectious. The exposed person may require a latent period before he or she enters the

Infectious stage. This can be accomplished by including an Exposed (E) stage

between the Susceptible and the Infectious stages (giving a so-called SEIR model).

Another possibility is that the Recovered (immune) persons lose their immunity after

some time, which means that they return ‘in a flow’ from Recovered to the

Susceptible stage (a so-called SIRS model).

A third possibility refers to the time in the Infectious stage (the so-called sojourn

time), which on average is T time units. But some persons will recover sooner and

others will require a longer time to recover. By modelling the Infectious stage by a

 64

single compartment, we have implicitly assumed an exponential sojourn-time

distribution. (Other assumptions about this distribution can be realized by using

several compartments in parallel and/or series.)

Structural uncertainty is handled by exploring alternative models to find the one

behaving most similar to the studied system.

2. Initial value uncertainty (Stock)

The information about the number of persons in the three compartments at time zero

may be approximate. Say that we know that the population in a village is N=1000

persons. Three persons from this village returns from a trip abroad bringing home a

new disease, but we don’t know whether 1, 2 or all 3 of them were infectious. The

initial value for the stock I(0) is then 1, 2 or 3 according to some probability

distribution.

Example:

In a SIR model the initial number of Infectious (I) at time zero is unknown. In 60% it

is I(0)=1, in 30% it is I(0)=2 and in10% it is I(0)=3 infectious persons. Then you can

draw a uniformly distributed random number between 0 and 1 and use this

distribution to initialize the I-stage at time zero. (See If-Then-Else in Section 10.4.)

 If Rand() < 0.6 Then

 1
 Else If Rand() < (0.6+0.3) Then
 2
 Else
 3

 End If

Note: Because initial stochasticity only affects the model at time zero, it will not be

influenced by the choice of the time-step DT.

3. Transition uncertainty (Flow of discrete entities)

Stochastic CSS can handle both continuous matter and discrete objects! It is crucial to

model continuous matter as continuous amounts and discrete objects as discrete

numbers (unless the number of objects is very large, see Section 14.1).

In the discrete case, a stock will hold an integer number of indivisible entities that can

be transferred by a flow. The number of entities transferred per time unit must then

also be integer. However, there is almost never enough information to decide the

exact event times for the transitions of entities into, out from or between stocks.

Transition uncertainties must then be included in the description of the flows, using

available statistical information.

Technically, this is handled by a Poisson distributed random number function.

Transition uncertainty is often the most fundamental and important uncertainty to

include in a model with discrete entities. It is easy and straightforward to implement

and stochasticity may drastically change the nature of the model’s behaviour

(described in Section 14.7).

In the continuous case, any fraction of the amount in a stock can enter or leave by a

flow during a time unit. However, no transition stochasticity is here included because

 65

of the ‘infinite divisibility’ according to the law of large numbers. (Of course, a

continuous flow may still vary stochastically when it is affected by parameter or

signal stochasticity.)

In a deterministic SIR model, with the same structure as that in Figure 14.1, the flows

F1 and F2 would have the forms: F1 := pSI and F2 := I/T. To understand how F1 and

F2 change when transition stochasticity is implemented, we multiply both hand sides

by DT.

Deterministic model Stochastic model

 DTF1 := DTpSI ⎯→ DTF1 := Poisson(DTpSI)

 DTF2 := DTI/T ⎯→ DTF2 := Poisson(DTI/T)

However, DTF1 and DTF2 is not allowed to the left of an assignment sign (:=), why

we have to divide both sides with DT. Applying the syntax of StochSD then gives:

 [F1] := RandPoisson(DT()*[p]*[S]*[I]) / DT() (1)
 [F2] := RandPoisson(DT()*[I]/[T]) / DT() (2)

DTF is the expected number of transferred entities during a time-step DT. The

Poisson Random Number Generator will always produce an integer number of

transitions that on average amounts to DTpSI or DTI/T. Thus, if you start

with integer numbers in the stocks, and the transitions add or subtract

integer numbers, then the stocks will remain integer.

To simplify (1) and (2), a new function PoFlow has been introduced (see Section

10.5). This function also illuminates the close relationship between the deterministic

and stochastic cases − just include the deterministic case as an argument in PoFlow():

Deterministic model Stochastic model

 [F1] := [p]*[S]*[I] ⎯→ [F1] := PoFlow([p]*[S]*[I]) (1’)

 [F2] := [I]/[T] ⎯→ [F2] := PoFlow([I]/[T]) (2’)

The Poisson distribution has a unique property that makes it DT-independent

This can be formulated as: Po(DT) Po(½DT)+Po(½DT) in the meaning

that the outcomes of Po(DT) is indistinguishable from the outcomes of

Po(½DT)+Po(½DT). This means that it is allowed to change the time-step DT

without destroying the validity of transition stochasticity!

A WARNING: In a deterministic case, you may add or subtract flow equations to

and from a stock:

Say that Stock := DTF1 - DTF2. Then you may write:

 Stock := DT(F1 - F2) = DTNetFlow.

However, this is not valid for the corresponding stochastic case: Thus:

 Stock := PoFlow(DT F1) – PoFlow(DT F2) (3)

MAY NOT be written as:

 Stock := PoFlow(DT F1 – DT F2) (4)

 66

To see why this is wrong, assume that DT F1=2 and DT F2=k (so that DTF1 –

DTF2 =0). Then the random numbers from the two terms in (3) may sometimes

generate a larger input than output to Stock and sometimes the opposite, while (4) will

always give Poisson(2-2) = Poisson(0) which always is zero. Then the Stock will

remain constant over time.

4. Parameter uncertainty (Parameter & Auxiliary)

Impact on the studied system from unexplained, irregularly varying phenomena in the

environment can be modelled by stochastic parameters described in statistical terms to

generate realistic inputs. In this case there is no given form to describe such

uncertainties. Only statistical knowledge about the variations can guide you here. In

the SIR model in Figure 14.1, the infectious parameter, p, and the sojourn time as

infectious, T, may vary with e.g. behaviour and weather in an unpredictable way.

A problem with parameter stochasticity is that its influence will change with the size

of the time-step DT. If you reduce DT, more random numbers with be drawn per time

unit. The effect of this is smoothing because of the law of large numbers.

One way of handle this problem is to pulse the changes of the parameter (using

Pulse(Start, Volume, Repeat) in Section 10.1). This allows the time-step, DT, to be

less or equal to the time interval (Repeat) between pulses, without affecting the

parameter stochasticity if DT is changed.

5. Signal uncertainty (Belongs to a Link, Implemented in connected primitives)

Before we discuss signal uncertainty, we have to clarify that an information link in a

model can be of two different kinds:

a. Artificial link – a technical concept to communicate logic between artificially

separated model parts. For example, when a radioactive atom decays, there is

one radioactive atom less in the system under study. In a compartment-based

model this is accomplished by a construction of a stock and an outflow. An

artificial link from the stock to the valve regulating the outflow has here to be

included. Its only function is to transfer information about the content (value)

of the stock to the flow equation. There is no counterpart to such a link in the

real system under study, and no uncertainty or delay can be involved.

b. Signal link – a description of a real information link that communicates

information in the system under study. This communicated information we

call ‘signal’. A signal can be distorted and/or delayed.

To exemplify this, we include an Authority in Figure 14.1 as shown in Figure 14.2.

Here we assume that this Authority collects information about the number of

Infectious persons (which takes time and is never exact). Then the Authority may

issue recommendations about using sanitary measures and avoiding contacts, which

later on, when the message is received, may affect the infection rate, F1.

 67

Figure 14.2. The SIR model supplemented with an Authority that collects information of the

number of Infectious (I) and issues recommendations that later on will affect F1.

Signals require time to reach the receiver that may vary in an unpredictable way. (The

information may be sent by post, it may arrive during the weekend but noticed first on

the following Monday, etc.), and the information may be distorted because of various

reasons (imperfect information, typing error, distortion of the signal, misinterpre-

tation, not reaching all subjects, etc.).

The distortion of the number of Infectious may be modelled by a stochastic

distribution function, and the length of a delay can be generated by drawing a random

number from another proper distribution. In this way, uncertainty about signals can be

handled in the sending or receiving primitive (usually Auxiliary, Parameter or Flow).

Initial value uncertainty, Transition uncertainty, Parameter uncertainty and Signal

uncertainty are all treated in a similar way. First you describe the uncertainty by a

statistical distribution. Then random numbers are drawn from this distribution.

14.6 What can happen if you ignore stochasticity?

There is a widespread misconception that you should ignore information you don’t

know exactly and e.g. replace it with an average value, ending up with a deterministic

model. This is a stupid, dishonest and dangerous attitude that often leads to biased

results, exclusion of phenomena, erroneous conclusions and no insight in the

precision of the estimates.

A dynamic and stochastic model should be based on all relevant information – even

though this information may not be complete!

When a population system of discrete objects is studied by a deterministic model,

various types of distortions may occur. For example:

• Information about irregular variations, risks, extremes and correlations are

eliminated.

• The possibility to calculate confidence intervals, etc. is lost.

• The elimination of transition stochasticity may result in biased estimates.

 68

• Important phenomena, such as extinction of a population or elimination of an

epidemic, which can happen in the system at study and is reflected in

stochastic modelling, will be lost.

• A deterministic model produces categorical answers, e.g. that a force X will

win over a force Y, whereas a stochastic model will give the probabilities of X

and Y as winners.

• Oscillations might disappear in a deterministic model although they should be

excited by transition stochasticity.

• In a deterministic model, the lack of transition stochasticity may erroneously

prevent queues from building up.

• The time until a specific event occurs should vary between replications in a

stochastic population model, but will be the same and often erroneous in a

deterministic one. For example, in a deterministic model the time to all

radioactivity is decayed will erroneously become infinitely long, even when it

should be finite and short.

In short, using a deterministic model will also mean that we only are aiming for

average estimates – loosing all insight in variations and extreme behaviours. Unless

this average will equal the average value obtained by a corresponding discrete and

stochastic model, the use of a deterministic model will produce biased results and

prevent interesting phenomena to be displayed.

14.7 A warning example – Comparing the results from a

deterministic and a stochastic SIR model

Assume the following for the classical SIR model, presented in Example 14.1 in

Section 14.4 above. The initial population N=S+I+R consists of 1000 susceptible

persons, a single infectious person and no recovered persons. The infection risk

parameter is p=0.0003 per person and time unit and the sojourn time in the infectious

stage is T=4 time units.

10 000 replications of the (transition-) stochastic SIR model to study the cumulated

number of susceptible individuals being infected, give an ensemble of results with the

average value of 53.1 persons that got the disease [95% confidence interval: 50.8 –

55.5 persons]. However, the corresponding deterministic model produces 318.5

persons getting the disease. In this case, an error of about 600 percent was introduced

by dropping the transition stochasticity.

The reason why the deterministic model distorts the results is because the initial

infectious subpopulation I(0)=1 is small. There is then a large chance that the single

infectious person will recover before infecting another susceptible, so that no

epidemic will occur.

14.8 Making a stochastic model reproducible

Making a stochastic model reproducible may seem to be a contradiction. However,

this is a legitimate technique that has many advantages in various situations. The

background is that stochasticity is generated by Random Number Generators (RNGs),

where each RNG produces a sequence of random numbers from a specified statistical

distribution. An RNG generates a very long sequence of random numbers that have

 69

virtually all the statistical properties of the specified statistical distribution. When the

sequence finally ends (which will not happen in your practice) it starts over and

repeats the cycle. When you define a Seed you tell where in the cycle to start, which

gives you the opportunity to exactly repeat a simulation. In StochSD the Seed is a

‘super-seed’ that controls all the seeds for the different RNGs, which makes it easier

for you. (However, the possibility to assign a separate seed to every RNG is more

powerful.)

Reproducibility can be used in the following cases:

• To demonstrate or reconstruct a simulation run because something of particular

interest happened, e.g. a species died out, or a water dam was destroyed because

of overflow of water and you want to understand why.

• To compare two similar models under similar conditions. For example,

comparing different designs of a queuing system with several stations. The

different designs should ideally be compared under the same stochastic

conditions. If we can provide the same sequences of arriving customers for the

two cases, then we would eliminate on source of variations in the results. This

technique is called variance reduction using common random numbers.

Unfortunately, to use variance reduction (except for very simple cases) requires

the possibility to assign separate seeds to each RNG, which is not possible in

StochSD

To make a stochastic simulation model reproducible, you have to lock the seed for the

random number generators in the model. Just click the Macros menu, define a Seed

and click the SetRandSeed button, or write e.g.: SetRandSeed(17) in the definition

field of the macro. By changing the argument, you will get another (reproducible)

simulation run. See Example 11.2.

To unlock the Seed you must manually delete the SetRandSeed(Seed) statement.

 70

15. A stochastic StochSD model

Example 15.1 Radioactive decay

A specimen, containing N=60 radioactive atoms that decay with a time constant of

T=10 minutes, is studied during 50 minutes.

A model of this can be described by the equations:

 N(t+DT) = N(t) - DTF(t) (where N(0) = 60)

 F(t) = Po[DTN(t)/T]/DT (In a deterministic model: F(t) = N(t)/T.)

Po[.] stands for a Poisson distributed random sample.

A StochSD model and a replication are shown in 15.1.

Figure 15.1. A stochastic model of radioactive decay and three possible outcomes.

Note that the definition of the Flow [F] as ’RandPoisson(DT()*[N]/[T]) / DT()’ can

be simplified by using the function PoFlow() as: ’PoFlow([N]/[T])’.

Also, note that in this stochastic model, there might be no radioactive atoms left after

half an hour, while a corresponding deterministic model will never reach zero

radioactive atoms. ◼

Of the same reason a stochastic SIR model can reach zero infectious persons and the

epidemic is over (unless more infectious persons are imported). However, a

corresponding deterministic model only asymptotically approaches zero.

Further, in a stochastic ecological model a species can get extinct, while in a

deterministic model it will recover from any fraction of an animal.

Model equations
N: 40
T: 10
F:
F: PoFlow([N]/[T])
 alternatively:

RandPoisson(DT()*[N]/[T])/DT()

 71

16. Tools in StochSD

StochSD contains four tools: StatRes, Optim, ParmVar and

Sensi (for Statistical analysis and result presentation,

Optimisation, Parameter estimation variations, and Sensitivity

analysis). These tools are found in the Tools menu. The

selected tool will show up in a separate window to the right

on the screen, and it works on the model displayed in the

Model window. Each of these four tools also has its own

documentation. Here we only indicate what they are used for.
 Figure 16.1. The

 Tools menu.

16.1 The StatRes tool

The price to pay for using a stochastic simulation model, is that many replications are

required, which must be followed by a statistical analysis and presentation of the

results.

StatRes (Statistical Results) orders StochRes to run a model a specified number of

times. Then a statistical analysis of specified quantities (Stocks, Flows, Auxiliaries or

Parameters) is performed. The Average, Standard deviation, Confidence interval,

Min, Max, and Percentiles for the performed number of replications are presented for

each specified quantity. You can also present the quantities from the replications in a

tabular form, or as a histogram. Further you can plot two outcomes and also obtain an

estimate of the correlation between the two quantities. For more information, see the

StatRes manual [13].

16.2 The Optim tool

Optim (Optimisation) is a simplex optimizer for finding the optimum (maximum or

minimum) of an objective function defined in a deterministic model with respect to a

number of model parameters.

An optimizer has two main purposes in deterministic modelling.

First, an optimizer can be used for parameter estimation. Then you construct a

function that measures the difference between the system and model behaviours. This

function is then minimized with respect to a set of parameters. The set of parameter

estimates obtained are those which produce the model behaviour that best reproduces

the behaviour of the system under study. Parameter estimation is often a necessary

part of the construction of a model.

Second, an optimizer can be used to find the optimal strategy for a model, e.g.

minimize costs or maximize benefits. To do this, an objective function is defined in

the model. This function depends on some model parameters. When the objective

function and the parameters are specified, the optimizer will systematically vary the

values of the specified parameters to find the optimal set of parameter values.

Optimisation is easy to perform on deterministic model – and much trickier on a

stochastic one.

 72

The simplex optimizer is stable and reasonable fast and has the advantage that you

easy can include boundaries in the parameter space. For more information, see the

Optim manual [14].

16.3 The ParmVar tool

ParmVar (Parameter Variations) is a tool for assessing the accuracy of previously

estimated parameters. After parameter estimation (with e.g. Optim) an important

question remains: How accurately are the set of parameters values estimated? This

question can be addressed with ParmVar.

Parameter estimation is tricky to perform on a stochastic model. It requires a large

number of replications for each tested set of parameter values (as compared to a single

replication in the deterministic case). However, for two important classes of models

the expected outcome from a stochastic model is the same as the outcome from a

corresponding deterministic one. Then you can find the optimal set of parameter

values with Optim.

This is a more advanced tool that usually will not be used in an introductory course.

For more information, see the ParmVar manual [15].

16.4 The Sensi tool

Sensi (Sensitivity Analysis) is a tool for sensitivity analysis. With this tool you can

study the effect on one or several outcomes from changing a parameter or initial

value. For example, you may study how the price of a commodity will affect the

revenue of a company. For more information, see the Sensi manual [16].

16.5 Hiding the Tool

The Hide option hides a displayed tool and lets the Model window occupy the whole

width of the screen.

16.6 Clearing a tool

After using a toll, the content is protected. If you want to clear the tool, you first have

to use the Reset-button in the actual tool. This is also important when you swap to a

new model and want to use the tool again. The tool must then be reset and the

variables specified for the old model must then be deleted.

 73

17. References to stochastic CSS modelling

[6] Gustafsson, L. (2000) Poisson Simulation – A Method for Generating Stochastic

Variations in Continuous System Simulation. Simulation, 74, 264-274.

https://www.researchgate.net/publication/220164720

[7] Gustafsson, L. (2003) Poisson Simulation as an Extension of Continuous System

Simulation for the Modeling of Queuing Systems. Simulation, 79, 528-541.

http://dx.doi.org/10.1177/003759703040234

[8] Gustafsson, L. and Sternad, M. (2007) Bringing Consistency to Simulation of

Population Models-Poisson Simulation as a Bridge between Micro and Macro

Simulation. Mathematical Biosciences, 209, 361-385.

http://dx.doi.org/10.1016/j.mbs.2007.02.004

[9] Gustafsson, L. and Sternad, M. (2010) Consistent Micro, Macro and State-Based

Modelling. Mathematical Biosciences, 225, 94-107.

http://dx.doi.org/10.1016/j.mbs.2010.02.003

[10] Gustafsson, L. and Sternad, M. (2013) When Can a Deterministic Model of a

Population System Reveal What Will Happen on Average? Mathematical

Biosciences, 243, 28-45. http://dx.doi.org/10.1016/j.mbs.2013.01.006

[11] Gustafsson, L. and Sternad, M. (2016), A guide to population modelling for

simulation. OJMSi, 4, 55-92. http://file.scirp.org/pdf/OJMSi_2016042717425486.pdf

[12] Gustafsson, L., Sternad, M. and Gustafsson E. (2017), The full potential of

Continuous System Simulation modelling, OJMSi, 5, 253-299.

http://www.scirp.org/JOURNAL/PaperInformation.aspx?PaperID=80104

[13] Gustafsson, L. (2018) StatRes – A tool for statistical analysis of stochastic

StochSD models. https://stochsd.sourceforge.io/manuals/StochSD_StatRes.pdf

 [14] Gustafsson, L. (2018) Optim – An optimiser for deterministic StochSD models.

https://stochsd.sourceforge.io/manuals/StochSD_Optim.pdf

 [15] Gustafsson, L. (2018) ParmVar – A tool for studying the variation of parameter

estimates in StochSD models.

https://stochsd.sourceforge.io/manuals/StochSD_ParmVar.pdf

[16] Gustafsson, L. (2018) Sensi – A sensitivity analyser for StochSD models.

https://stochsd.sourceforge.io/manuals/StochSD_Sensi.pdf

https://www.researchgate.net/publication/220164720
http://dx.doi.org/10.1177/003759703040234
http://dx.doi.org/10.1016/j.mbs.2007.02.004
http://dx.doi.org/10.1016/j.mbs.2010.02.003
http://dx.doi.org/10.1016/j.mbs.2013.01.006
http://file.scirp.org/pdf/OJMSi_2016042717425486.pdf
http://www.scirp.org/JOURNAL/PaperInformation.aspx?PaperID=80104
https://stochsd.sourceforge.io/manuals/StochSD_StatRes.pdf
https://stochsd.sourceforge.io/manuals/StochSD_Optim.pdf
https://stochsd.sourceforge.io/manuals/StochSD_ParmVar.pdf
https://stochsd.sourceforge.io/manuals/StochSD_Sensi.pdf

 74

Appendix. The StochSD package, Licenses and

Responsibility

A1. The structure of the StochSD package

StochSD is constructed from open-source software only. Figure A.1 shows the over-

all structure of the StochSD package.

The StochSD package

Figure A.1. The components of StochSD and its use of third-party software.

The Tools always connects to the actual model in the Model Window.

D: StochSD-Desktop includes NW.js.

W: StochSD-Web runs within a browser.

A2. Short explanation of licenses for StochSD and third-

party components

StochSD is a stochastic CSS language based on the System Dynamics philosophy.

StochSD is released under Affero General Public License v3.

https://www.gnu.org/licenses/agpl-3.0.html

However, StochSD uses many open-source third-party components. The most notable

one is Insight Maker, which is licensed under its own Insight Maker Public License

that in turn is an extension of Affero GPL. All non-open source components of the

original Insight Maker are removed in StochSD.

The third-party components used in StochSD are listed below.

StochSD
Graphical User Interface,

Construction elements,

Link checker,

Tables & Plots,

File handler, Etc.

D
W

Insight Maker

Engine with DE-solver, Function

library, Primitives, Error checker,

Macro facility, Etc.

JavaScript

Open-source softwares for IM:

jStat, Springy, RedBlackTree.js,

ANTLR

NodeWebkit (NW.js)

Tools

 Optim

 Sensi

 StatRes

ParmVar

StochSD

MODEL Local

disk

File.ssd
Open, Save, ...

Open-source

softwares for

StochSD:

jQuery, jQuery-UI,

jqPlot, Normalize.css,

CodeMirror

https://www.gnu.org/licenses/agpl-3.0.html
https://www.gnu.org/licenses/agpl-3.0.html

 75

Third-party components

 Insight Maker (IM): Primitives, Simulation engine, Function library, Macro

 function facility, DE solver, Error checker ,etc.

Insight Maker Public License thus covers all StochSD’s JavaScript, HTML and

CSS (Cascading Style Sheets) code for StochSD. (In the StochSD package the

original non-open source code in Insight Maker, such as ExtJS and mxGraph are

completely eliminated and replaced by jQuery-UI and jqPlot.)

Insight Maker Public License: https://insightmaker.com/impl.

 jqPlot: Diagram drawing tool.

 MIT License: https://github.com/jqPlot/jqPlot#legal-notices

 jQuery: Library to simplify HTML, DOM tree transversal and manipulation, and

 event handling.

 MIT License: https://github.com/jquery/jquery/blob/master/LICENSE.txt

 jQuery-UI: User Interface components. Handles pop-up windows.

 MIT License: https://github.com/jquery/jquery-ui/blob/master/LICENSE.txt

 jStat: Statistical library.

 MIT License: https://github.com/jstat/jstat/blob/1.x/LICENSE

 Springy: A force directed graph layout algorithm. (Used in IM.)

 MIT License: https://github.com/dhotson/springy/blob/master/LICENSE

 RedBlackTree.js: Organizes a self-balancing binary search tree. (Used in IM.)

 BSD 3 Clause License: http://www.kevlindev.com/license.txt

 Normalize.css: Making the User Interface look more similar across browsers.

 MIT License: https://www.npmjs.com/package/normalize.css/v/3.0.2

 NW.js: JavaScript Desktop wrapper. (Runs JavaScript without a browser.)

 MIT License: https://github.com/nwjs/nw.js/blob/nw23/LICENSE

 Electron: Alternative JavaScript Desktop wrapper. (Included but not used.)

 MIT License: https://github.com/electron/electron/blob/master/LICENSE

 ANTLR: A parser generator. Interprets text into formulas.

 BSD 3 Clause License: https://www.antlr.org/license.html

 CodeMirror: Text editor for editing code. Used for styling and brackets matching.

 MIT License: https://codemirror.net/LICENSE

The complete licences are also found under Help/Third-party Software in StochSD.

A3. Responsibility

The user is fully responsible for the use of StochSD. The producer and the supplier of

this code take no responsibility for the use or functioning of StochSD and its tools.

See the AGPL license: https://www.gnu.org/licenses/agpl-3.0.html

The StochSD responsibility text in accordance to AGPL is cited here:

https://insightmaker.com/impl
https://github.com/jqPlot/jqPlot#legal-notices
https://github.com/jquery/jquery/blob/master/LICENSE.txt
https://github.com/jquery/jquery-ui/blob/master/LICENSE.txt
https://github.com/jstat/jstat/blob/1.x/LICENSE
https://github.com/dhotson/springy/blob/master/LICENSE
https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree
http://www.kevlindev.com/license.txt
https://www.npmjs.com/package/normalize.css/v/3.0.2
https://github.com/nwjs/nw.js/blob/nw23/LICENSE
https://github.com/electron/electron/blob/master/LICENSE
https://www.antlr.org/license.html
https://codemirror.net/LICENSE
https://www.gnu.org/licenses/agpl-3.0.html

 76

“15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE

LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR

OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND,

EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE

ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.

SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY

SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL

ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE

PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY

GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE

OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR

DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES

OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF

SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES. “

 77

Index

Abs function 45

ArcCos function 45

ArcSin function 44

ArcTan function 45

Arithmetic operators 24

Auxiliary 10, 19

Bathtub analogy 10

Building blocks 19

Buttons .. 16

Ceiling function (Round Up) 43

Classical CSS 5

Comment ... 23

Compare Simulations Plot 32

Continuous System Simulation 5

Converter..................................... 11, 52

Converter – Table look-up function .. 52

Cos function 44

CSS ... 5

CSV ... 31

Delay function 47

Delay function of order 1 47

Delay function of order 3 47

Delays .. 46

Deterministic modelling...................... 9

Dialog box ... 21

DT – step-size 42

Environment 11, 12

Equation List 15

Equations... 24

Error checking 24

Euler’s method 24, 26

Exp function 45

eps (Smallest number)....................... 45

Fix ... 49

Floor function (RoundDown) 43

Flow .. 10, 19

Full Potential CSS 5, 16, 60, 61, 73

Function (defined by you) 41

Functions ... 38

Ghost ... 19, 20

Histogram ... 34

Historical Functions 46

IfThenElse function 40

If-Then-Else function / Structured 40

Initial value 22, 24, 29

Initial value uncertainty 61, 64

Insight Maker 5

Installation of StochSD 7

Integration method 26

Length ... 26

Licenses and Responsibility 74, 75

Link ... 10, 20

Ln function .. 45

Log function 45

Macro approach 60

Macro Functions 54

Mathematical Functions 42

Max function 41

Menus ... 13

Micro approach 60

Min function 41

Model building 19

Modulus function 45

Number Box 30

Optim tool ... 71

Parameter 10, 19

Parameter uncertainty 61, 66

ParmVar tool 72

PastCorrelation 48

PastMax .. 47

PastMean ... 48

PastMedian 48

PastMin ... 48

PastStdev... 48

PoFlow – Poisson flow rand. Func. .. 49

Primitives .. 19

Programming Fuctions...................... 40

Pulse function 43

Ramp function 44

Rand - Uniform random function 49

 78

RandBernoulli – 0 or 1 rand. Func. ... 49

RandBeta –Beta random Func. 51

RandBinomial – Binomial rand func 49

RandDist – Empirical random func. . 52

RandExp – expo. rand. Func. 51

RandGamma – Gamma rand. Func. .. 51

RandNormal - Normal rand. Func. ... 50

Random Number Functions 49

RandPoisson – Poisson rand. Func. .. 51

RandTriangular - Triang. rand distr. 51

References 58 73

Restrict to non-negative values ... 21, 22

Results presentation 30

RK4 method 24

Round Down function 43

Round function.................................. 43

Round Up function 43

SD ... 5

Seed ... 54, 55

Sensi tool ... 72

SetRandSeed 54, 55

Signal uncertainty 61, 66

Sign function 45

Sin function 44

Smooth function 47

Specification of the simulation 26

Sqrt function...................................... 45

Start Time.................................... 26, 42

Static Delay function......................... 41

Statistical Distributions 52

StatRes tool 71

Step function 44

Stochastic modelling 60

Stochasticity 61

StochSD .. 5

StochSD Desktop 7, 74

StochSD Home Page 6

StochSD Web 7, 74

Stock ... 10, 19

StopIf function 41

Structural uncertainty 61, 63

System boundaries 11

System dynamics 5

System Under Study 11, 12

T – Current time 42

Table ... 31

Tan function………………………. 44

TE – end time of simulation 43

Throwing Error function 41

Time Functions 42

Time Plot .. 31

Time Step 15, 26, 42

Time Unit 13, 18, 19, 56

TL – length of simulation 42

Tools in StochSD 71

Transition uncertainty 61, 64

TS – Start time for simulation 42

TSV ... 31

Uncertainty 61

XY Plot ... 33

